2.
Optimizing subroutines in assembly
language
An optimization guide for x86 platforms

By Agner Fog. Copenhagen University College of Engineering.
Copyright © 1996 - 2011. Last updated 2011-01-30.

Contents
N (o o 11 e 1o o PO 4
1.1 Reasons for using assembly COAEuuiiiiiiiiiiiiicce e 5
1.2 Reasons for not using assembly COAEccoiriiiiiiiiiiii e 5
1.3 Microprocessors covered by this manual ... 6
1.4 Operating systems covered by this manual....................ccciiiii e, 7
2 BEfOre YOU STAo ————— 7
2.1 Things to decide before you start programmingccccuviiiiiiiiiiiiniie e 7
2.2 Make atest Strategy.........coouiiiiiiiiiii e 9
2.3 Common coding PitfallS.........couuiiiiiiiie e 10
3 The basics of assemMbly COAING........ccoiiiiiiiiiii e 12
3.1 Assemblers availableoooo e 12
3.2 Register set and basic iNStruCtions.............cccooiiiiiiiic e 14
3.3 AdAreSSING MOUES ...t e e e et e e e e e e e e e e e et et s e e eeeaeeeeasnens 18
3.4 Instruction code fOrmMatooviiiiiiiiiiii s 24
3.5 INSrUCHION PrefiXES....coviiiiiii i e 26
4 ABI StaNdards........oooviiiiii 27
4.1 REQISTEI USAJE. ...eeeeeeiiiiiiiiiiiiieieiee ettt ettt e st s e sesnnsesnesnssssnsnnnnnnnnnnne 27
4.2 DAta@ STOTAQGEeeeeeiiiiiiiiiieeee ettt nn i nnne 28
4.3 Function calling CONVENLIONSccooiiiiiieccce e 28
4.4 Name mangling and name decorationooooiiiiiiiiiiiiiii e 30
4.5 FUNCHON ©XAMPIES.. . i e e e et e e e e e e e e e eeaan e e e e eeeeeees 31
5 Using intrinsic FUNCHONS iN CH4 .. oo 33
5.1 Using intrinsic functions for system code ..., 35
5.2 Using intrinsic functions for instructions not available in standard C++ 35
5.3 Using intrinsic functions for vector operationsccccooiiieiiiiiiiiccci e, 35
5.4 Availability of intrinsic fUNCLONS...........coooiiii e, 35
6 Using inline assembly in CH+ ... 36
6.1 MASM style inline @ssembIy ... 37
6.2 Gnu style inline @assembIyooiiiiiiii 41
A8 £ 1T = T T =T =T 0] o) Y 44
7.1 Static INK braries ... 46
7.2 DynamicC lINK IDrari€scoooo e 46
7.3 Libraries in source code fOrM........oouiiiiiiiiiiiiiii 47
7.4 MakKing Classes iN @SSEmMDIY.........oooiiiiiiiiii 48
7.5 Thread-safe fUNCLONScoviiiiiiiiii e 50
7.6 MAKETIES ... 50
8 Making function libraries compatible with multiple compilers and platforms..................... 51
8.1 Supporting multiple name mangling schemescccccoiiii 52
8.2 Supporting multiple calling conventions in 32 bitmodecoovviiiiieiiieieeee, 53
8.3 Supporting multiple calling conventions in 64 bitmodeccovvviiiiiiiiiiieeeee, 56
8.4 Supporting different object file formats............ccooi 57
8.5 Supporting other high level languages..............oouviiiiiiiii e, 58
9 OptiMIZING fOr SPEEMAoveii et e e 59
9.1 Identify the most critical parts of your Code ... 59

9.2 OUL Of OFdEr @XECULION .. .ceeeeee e 59

9.3 Instruction fetch, decoding and retirement ..., 62

9.4 Instruction latency and throughput ..., 63
9.5 Break dependency Chains.........ccoooiii e 64
9.6 JUMPS @NA CaIIS ... 65
LEOI @] o]0]v4l g o I (o] =] 4= B RPP 72
10.1 Choosing shorter iNStruCtiONS........ccoooiiiiiic e 72
10.2 Using shorter constants and addreSSesooooveiiiiiiiiiiiiiiiecic e 74
10.3 ReUSING CONSTANEScccoiiiiiiiiic e e e e e e eenens 75
10.4 Constants in 64-Dit MOAEooiiiiiiiiiiii e eeenees 75
10.5 Addresses and pointers in 64-bit MOdeoooiiiiiiiii e 75
10.6 Making instructions longer for the sake of alignment...............ccooooiiin. 77
10.7 Using multi-byte NOPs for alignment ..o 80
11 OptiMIZING MEMOIY GCCESS.eiiiiiiiiitiieiie e e ettt e e e e e e ettt e e e e e e e e et b e e e e e e e e e anneeeees 80
11.1 HOW CACRING WOTKS ...ttt 81
I I =T = o= o T 82
L RC I 0T o o= o o1 YT 82
11.4 AlIgNMeNnt Of data......cooiiee e 82
11.5 AlIGNMENT Of COAE .. .uiiiiiiec e e e e e e eeeens 85
11.6 Organizing data for improved Caching............cccoooiiiiiiiiiiieei e 86
11.7 Organizing code for improved CacChingooiiiiiiiiiiiiiiee e 87
11.8 Cache control INSrUCHIONS.........uuuiiiiiiiii s nennnnnnees 87
P2 1o To] o = J S 87
12.1 Minimize 100p OVEINEAdoooii e 88
12.2 INAUCHION Vari@bIES ... e 90
12.3 Move [00p-invariant Codeouuiiiiii i e 91
12.4 Find the DOtENECKSo e e e e e e e 92
12.5 Instruction fetch, decoding and retirement in @ l00peuvveiiiiiiiiiiiiiiiiiiiiiiiiiinns 92
12.6 Distribute pops evenly between execution UNitS...........cccoovviiiiiiiiiiiicciie e 93
12.7 An example of analysis for bottlenecks on PM ..o, 93
12.8 Same eXample ON COME2oviiiiiiiiiiiieiiieeeeieeeeeeee et eeeeeeeaeeeaeeaaeaassaesssesssnnnssssssnsnnnnes 97
12.9 Same example on Sandy Bridge.........cooiiiiiiiiiiiiiie e 98
12.10 LOOP UNFOHING c.eeiiiiii e e e e e e e e e e e aa s 99
12.11 Optimize CaChiNgGcoeeieee e 101
12.12 ParalleliZationooooooiiiiii et eaeeeees 102
12.13 ANalyzing dePENAENCESovviueiiii e e e 104
12.14 Loops on processors without out-of-order executionccccooovieviviiiiiiiinnnnn. 108
B2 Y= Vo o TN o o o 13 109
13 VeCtor programmingoooi oo 111
13.1 Conditional moves in SIMD registersoouuvueiiiiiiiie e, 113
13.2 Using vector instructions with other types of data than they are intended for 116
13.3 ShUffliNg dat@......ceeeiiieee e 117
13.4 Generating CONSIANTScoiiiiiiiieee e 121
13.5 Accessing unaligned data ..o 123
13.6 Using AVX instruction set and YMM registersccooooiiiiiiiniiiiiiiiiiiieeeeeeeeeeee 127
13.7 Vector operations in general purpose registers.............ovvceeiieiiiiieeiieeeeeen, 131
LR Y1011 T == T T PSS 133
14.1 Hyperthreadingoooooiooi e 133
15 CPU diSPatChing... ..ot e e e e e e 134
15.1 Checking for operating system support for XMM and YMM registers..................... 135
16 Problematic INSrUCLIONScoooi e 136
16.1 LEA instruction (all ProCESSOIS)......ccouuuiiiiiiiie e 136
T6.2 INC @nd DEC ...ttt e e e e e e e e e e e ee e e 137
16.3 XCHG (Al PrOCESSOIS) ..ccvvvveiiiieeeeeeeeeete ettt e e e e e e e e et e e e e e e e e e e e e eaeeas 137
16.4 Shifts and rotates (P4)oeeiiiiii s 138
16.5 Rotates through carry (all PrOCESSOrS)ceuiiiiiiiiiiiiiiiie e 138
16.6 Bit test (All PrOCESSOIS)cevviiiiii i 138
16.7 LAHF and SAHF (all PrOCESSOIS)ccuuuuiiiiiiiieeeiiiiiieee ettt 138
16.8 Integer multiplication (all ProCESSOIS).......uuiiiiiiiiiiiiiiiiie e 138

16.9 DiviSion (Al PrOCESSOIS) ...cuuiiuiiiiiieee i e e e e e 138

16.10 String instructions (all ProCESSOrS)uiiiiiiiiiieicce e 143
16.11 WAIT instruction (all ProCESSOIS)uuiiiiiiiieiiiiiiiie et 144
16.12 FCOM + FSTSW AX (All PrOCESSOIS)....ceiiiieiiiiiiiiiiieaaaeeeaaiieie e e e e e e e seieeeeeeee s 145
16.13 FPREM (@l PrOCESSOIS) ...uuuiiiieiiiieiiiie ettt ettt e et e e e 146
16.14 FRNDINT (@Il PrOCESSOIS)..uuuuuuiiiiiieeeeiieeeeitteee s e e e e ettt e e e e e e e e e e e e eeanaaans 146
16.15 FSCALE and exponential function (all processors)ccccouuruieeiieiniiiiiieeeeeenas 146
16.16 FPTAN (Qll PrOCESSOIS)..cuuiiiiiiiieeeeiieeiee ettt e et e e e e e e e e e e e e e e e 148
16.17 FSQRT (SSE PrOCESSOIS)....uuuuuuuuiuiuniiinniiniiiiiniiniininennnneennsnnnnnnes 148
16.18 FLDCW (MOSt INtel PrOCESSOIS) .. .couiiiiiiiiieee ettt 148
17 SPECIAl tOPICS ... 149
17.1 XMM versus floating point registers ..o 149
17.2 MMX Versus XMM rEQISTEISeuuuiiiiiiiiiiiiiiiiiiiiiiiteeeeieese s eneeneeeeeeee 150
17.3 XMM VErsus YMM rEQISTEISeuuuiiiiiiiiiiiiiiiiiiitiiitieieieeeeeeesesasseeeseseeeseeneeennennnnnnnees 150
17.4 Freeing floating point registers (all Processors).........coevvvvviiiiiiieii e, 150
17.5 Transitions between floating point and MMX instructions..............ccooovvvicennn. 151
17.6 Converting from floating point to integer (All processors)cccevveeeeniiiiiiieeeeenn. 151
17.7 Using integer instructions for floating point operationsc...ccccoooiiiiiiieen e, 152
17.8 Using floating point instructions for integer operationsccccoooiiiiiiiiiiien, 155
17.9 Moving blocks of data (All PrOCESSOrS)......ccuuiiiiiiiiiiiiiiie e 156
17.10 Self-modifying code (All PrOCESSOIS)uuiiiiiiiiiiiiiiieaaa ettt e e e e 156
18 Measuring PErfOIMANCE.........c.ciiiiiiiiee e e e et e e e e e e e e e e e e e e ra e e 157
18.1 TeStNG SPEEA ...ttt e e e 157
18.2 The pitfalls Of UNIt-teStINGcoiiiiiii e 159
TO LIterature ..., 159
{0l 7o)Y/ 4 o] o1 8 To] 1 o7= TP 160

1 Introduction
This is the second in a series of five manuals:

1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac
platforms.

2. Optimizing subroutines in assembly language: An optimization guide for x86
platforms.

3. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for
assembly programmers and compiler makers.

4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD and VIA CPUs.

5. Calling conventions for different C++ compilers and operating systems.

The latest versions of these manuals are always available from www.agner.org/optimize.
Copyright conditions are listed on page 160 below.

The present manual explains how to combine assembly code with a high level programming
language and how to optimize CPU-intensive code for speed by using assembly code.

This manual is intended for advanced assembly programmers and compiler makers. It is
assumed that the reader has a good understanding of assembly language and some
experience with assembly coding. Beginners are advised to seek information elsewhere and
get some programming experience before trying the optimization techniques described
here. | can recommend the various introductions, tutorials, discussion forums and
newsgroups on the Internet (see links from www.agner.org/optimize) and the book
"Introduction to 80x86 Assembly Language and Computer Architecture" by R. C. Detmer, 2.
ed. 2006.

The present manual covers all platforms that use the x86 and x86-64 instruction set. This
instruction set is used by most microprocessors from Intel, AMD and VIA. Operating
systems that can use this instruction set include DOS, Windows, Linux, FreeBSD/Open
BSD, and Intel-based Mac OS.

Optimization techniques that are not specific to assembly language are discussed in manual
1: "Optimizing software in C++". Details that are specific to a particular microprocessor are
covered by manual 3: "The microarchitecture of Intel, AMD and VIA CPUs". Tables of
instruction timings etc. are provided in manual 4: "Instruction tables: Lists of instruction
latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs".
Details about calling conventions for different operating systems and compilers are covered
in manual 5: "Calling conventions for different C++ compilers and operating systems".

Programming in assembly language is much more difficult than high-level language. Making
bugs is very easy, and finding them is very difficult. Now you have been warned! Please
don't send your programming questions to me. Such mails will not be answered. There are
various discussion forums on the Internet where you can get answers to your programming
questions if you cannot find the answers in the relevant books and manuals.

Good luck with your hunt for nanoseconds!

http://www.agner.org/optimize
http://www.agner.org/optimize

1.1 Reasons for using assembly code

Assembly coding is not used as much today as previously. However, there are still reasons
for learning and using assembly code. The main reasons are:

1. Educational reasons. It is important to know how microprocessors and compilers
work at the instruction level in order to be able to predict which coding techniques
are most efficient, to understand how various constructs in high level languages
work, and to track hard-to-find errors.

2. Debugging and verifying. Looking at compiler-generated assembly code or the
disassembly window in a debugger is useful for finding errors and for checking how
well a compiler optimizes a particular piece of code.

3. Making compilers. Understanding assembly coding techniques is necessary for
making compilers, debuggers and other development tools.

4. Embedded systems. Small embedded systems have fewer resources than PC's and
mainframes. Assembly programming can be necessary for optimizing code for speed
or size in small embedded systems.

5. Hardware drivers and system code. Accessing hardware, system control registers
etc. may sometimes be difficult or impossible with high level code.

6. Accessing instructions that are not accessible from high level language. Certain
assembly instructions have no high-level language equivalent.

7. Self-modifying code. Self-modifying code is generally not profitable because it
interferes with efficient code caching. It may, however, be advantageous for example
to include a small compiler in math programs where a user-defined function has to
be calculated many times.

8. Optimizing code for size. Storage space and memory is so cheap nowadays that it is
not worth the effort to use assembly language for reducing code size. However,
cache size is still such a critical resource that it may be useful in some cases to
optimize a critical piece of code for size in order to make it fit into the code cache.

9. Optimizing code for speed. Modern C++ compilers generally optimize code quite well
in most cases. But there are still cases where compilers perform poorly and where
dramatic increases in speed can be achieved by careful assembly programming.

10. Function libraries. The total benefit of optimizing code is higher in function libraries
that are used by many programmers.

11. Making function libraries compatible with multiple compilers and operating systems.
It is possible to make library functions with multiple entries that are compatible with
different compilers and different operating systems. This requires assembly
programming.

The main focus in this manual is on optimizing code for speed, though some of the other
topics are also discussed.

1.2 Reasons for not using assembly code

There are so many disadvantages and problems involved in assembly programming that it
is advisable to consider the alternatives before deciding to use assembly code for a
particular task. The most important reasons for not using assembly programming are:

1. Development time. Writing code in assembly language takes much longer time than
in a high level language.

2. Reliability and security. It is easy to make errors in assembly code. The assembler is
not checking if the calling conventions and register save conventions are obeyed.
Nobody is checking for you if the number of PUSH and POP instructions is the same in
all possible branches and paths. There are so many possibilities for hidden errors in
assembly code that it affects the reliability and security of the project unless you
have a very systematic approach to testing and verifying.

3. Debugging and verifying. Assembly code is more difficult to debug and verify
because there are more possibilities for errors than in high level code.

4. Maintainability. Assembly code is more difficult to modify and maintain because the
language allows unstructured spaghetti code and all kinds of dirty tricks that are
difficult for others to understand. Thorough documentation and a consistent
programming style is needed.

5. System code can use intrinsic functions instead of assembly. The best modern C++
compilers have intrinsic functions for accessing system control registers and other
system instructions. Assembly code is no longer needed for device drivers and other
system code when intrinsic functions are available.

6. Application code can use intrinsic functions or vector classes instead of assembly.
The best modern C++ compilers have intrinsic functions for vector operations and
other special instructions that previously required assembly programming. It is no
longer necessary to use old fashioned assembly code to take advantage of the
Single-Instruction-Multiple-Data (SIMD) instructions. See page 33.

7. Portability. Assembly code is very platform-specific. Porting to a different platform is
difficult. Code that uses intrinsic functions instead of assembly are portable to all x86
and x86-64 platforms.

8. Compilers have been improved a lot in recent years. The best compilers are now
better than the average assembly programmer in many situations.

9. Compiled code may be faster than assembly code because compilers can make
inter-procedural optimization and whole-program optimization. The assembly
programmer usually has to make well-defined functions with a well-defined call
interface that obeys all calling conventions in order to make the code testable and
verifiable. This prevents many of the optimization methods that compilers use, such
as function inlining, register allocation, constant propagation, common sub-
expression elimination across functions, scheduling across functions, etc. These
advantages can be obtained by using C++ code with intrinsic functions instead of
assembly code.

1.3 Microprocessors covered by this manual
The following families of x86-family microprocessors are discussed in this manual:

Microprocessor name Microarchitecture Abbreviation
code name
Intel Pentium (without name P5 P1
suffix)
Intel Pentium MMX P5 PMMX
Intel Pentium Pro P6 PPro
Intel Pentium |l P6 P2

Intel Pentium Il P6 P3

Intel Pentium 4 (NetBurst) Netburst P4

Intel Pentium 4 with EM64T, Netburst, Prescott P4E

Pentium D, etc.

Intel Pentium M, Core Solo, Dothan, Yonah PM

Core Duo

Intel Core 2 Merom, Wolfdale Core2

Intel Core i7 Nehalem Nehalem

Intel Core i5, i7 Sandy Bridge Sandy Bridge

Intel Atom 330 Diamondville Atom

AMD Athlon K7 AMD K7

AMD Athlon 64, Opteron, etc., K8 AMD K8

64-bit

AMD Family 10h, Phenom, K10 AMD K10

third generation Opteron

VIA Nano, 2000 series Nano 2000

VIA Nano, 3000 series Isaiah Nano 3000
Table 1.1. Microprocessor families

See manual 3: "The microarchitecture of Intel, AMD and VIA CPUs" for details.

1.4 Operating systems covered by this manual
The following operating systems can use x86 family microprocessors:

16 bit: DOS, Windows 3.x.
32 bit: Windows, Linux, FreeBSD, OpenBSD, NetBSD, Intel-based Mac OS X.
64 bit: Windows, Linux, FreeBSD, OpenBSD, NetBSD, Intel-based Mac OS X.

All the UNIX-like operating systems (Linux, BSD, Mac OS) use the same calling
conventions, with very few exceptions. Everything that is said in this manual about Linux
also applies to other UNIX-like systems, possibly including systems not mentioned here.

2 Before you start

2.1 Things to decide before you start programming

Before you start to program in assembly, you have to think about why you want to use
assembly language, which part of your program you need to make in assembly, and what
programming method to use. If you haven't made your development strategy clear, then you
will soon find yourself wasting time optimizing the wrong parts of the program, doing things
in assembly that could have been done in C++, attempting to optimize things that cannot be
optimized further, making spaghetti code that is difficult to maintain, and making code that is
full or errors and difficult to debug.

Here is a checklist of things to consider before you start programming:

» Never make the whole program in assembly. That is a waste of time. Assembly code
should be used only where speed is critical and where a significant improvement in
speed can be obtained. Most of the program should be made in C or C++. These are
the programming languages that are most easily combined with assembly code.

If the purpose of using assembly is to make system code or use special instructions
that are not available in standard C++ then you should isolate the part of the
program that needs these instructions in a separate function or class with a well
defined functionality. Use intrinsic functions (see p. 33) if possible.

If the purpose of using assembly is to optimize for speed then you have to identify
the part of the program that consumes the most CPU time, possibly with the use of a
profiler. Check if the bottleneck is file access, memory access, CPU instructions, or
something else, as described in manual 1: "Optimizing software in C++". Isolate the
critical part of the program into a function or class with a well-defined functionality.

If the purpose of using assembly is to make a function library then you should clearly
define the functionality of the library. Decide whether to make a function library or a
class library. Decide whether to use static linking (. | i b in Windows, . a in Linux) or
dynamic linking (. dl | in Windows, . so in Linux). Static linking is usually more
efficient, but dynamic linking may be necessary if the library is called from languages
such as C# and Visual Basic. You may possibly make both a static and a dynamic
link version of the library.

If the purpose of using assembily is to optimize an embedded application for size or
speed then find a development tool that supports both C/C++ and assembly and
make as much as possible in C or C++.

Decide if the code is reusable or application-specific. Spending time on careful
optimization is more justified if the code is reusable. A reusable code is most
appropriately implemented as a function library or class library.

Decide if the code should support multithreading. A multithreading application can
take advantage of microprocessors with multiple cores. Any data that must be
preserved from one function call to the next on a per-thread basis should be stored
in a C++ class or a per-thread buffer supplied by the calling program.

Decide if portability is important for your application. Should the application work in
both Windows, Linux and Intel-based Mac OS? Should it work in both 32 bit and 64
bit mode? Should it work on non-x86 platforms? This is important for the choice of

compiler, assembler and programming method.

Decide if your application should work on old microprocessors. If so, then you may
make one version for microprocessors with, for example, the SSE2 instruction set,
and another version which is compatible with old microprocessors. You may even

make several versions, each optimized for a particular CPU. It is recommended to
make automatic CPU dispatching (see page 134).

There are three assembly programming methods to choose between: (1) Use
intrinsic functions and vector classes in a C++ compiler. (2) Use inline assembly in a
C++ compiler. (3) Use an assembler. These three methods and their relative
advantages and disadvantages are described in chapter 5, 6 and 7 respectively
(page 33, 36 and 44 respectively).

If you are using an assembler then you have to choose between different syntax
dialects. It may be preferred to use an assembler that is compatible with the
assembly code that your C++ compiler can generate.

Make your code in C++ first and optimize it as much as you can, using the methods

described in manual 1: "Optimizing software in C++". Make the compiler translate
the code to assembly. Look at the compiler-generated code and see if there are any

8

possibilities for improvement in the code.

» Highly optimized code tends to be very difficult to read and understand for others
and even for yourself when you get back to it after some time. In order to make it
possible to maintain the code, it is important that you organize it into small logical
units (procedures or macros) with a well-defined interface and calling convention and
appropriate comments. Decide on a consistent strategy for code comments and
documentation.

» Save the compiler, assembler and all other development tools together with the
source code and project files for later maintenance. Compatible tools may not be
available in a few years when updates and modifications in the code are needed.

2.2 Make a test strategy

Assembly code is error prone, difficult to debug, difficult to make in a clearly structured way,
difficult to read, and difficult to maintain, as | have already mentioned. A consistent test
strategy can ameliorate some of these problems and save you a lot of time.

My recommendation is to make the assembly code as an isolated module, function, class or
library with a well-defined interface to the calling program. Make it all in C++ first. Then
make a test program which can test all aspects of the code you want to optimize. It is easier
and safer to use a test program than to test the module in the final application.

The test program has two purposes. The first purpose is to verify that the assembly code
works correctly in all situations. And the second purpose is to test the speed of the
assembly code without invoking the user interface, file access and other parts of the final
application program that may make the speed measurements less accurate and less
reproducible.

You should use the test program repeatedly after each step in the development process and
after each modification of the code.

Make sure the test program works correctly. It is quite common to spend a lot of time
looking for an error in the code under test when in fact the error is in the test program.

There are different test methods that can be used for verifying that the code works correctly.
A white box test supplies a carefully chosen series of different sets of input data to make
sure that all branches, paths and special cases in the code are tested. A black box test
supplies a series of random input data and verifies that the output is correct. A very long
series of random data from a good random number generator can sometimes find rarely
occurring errors that the white box test hasn't found.

The test program may compare the output of the assembly code with the output of a C++
implementation to verify that it is correct. The test should cover all boundary cases and
preferably also illegal input data to see if the code generates the correct error responses.

The speed test should supply a realistic set of input data. A significant part of the CPU time
may be spent on branch mispredictions in code that contains a lot of branches. The amount
of branch mispredictions depends on the degree of randomness in the input data. You may
experiment with the degree of randomness in the input data to see how much it influences
the computation time, and then decide on a realistic degree of randomness that matches a
typical real application.

An automatic test program that supplies a long stream of test data will typically find more
errors and find them much faster than testing the code in the final application. A good test

program will find most errors, but you cannot be sure that it finds all errors. It is possible that
some errors show up only in combination with the final application.

2.3 Common coding pitfalls

The following list points out some of the most common programming errors in assembly
code.

1. Forgetting to save registers. Some registers have callee-save status, for example
EBX. These registers must be saved in the prolog of a function and restored in the
epilog if they are modified inside the function. Remember that the order of POP
instructions must be the opposite of the order of PUSH instructions. See page 27 for a
list of callee-save registers.

2. Unmatched PUSH and POP instructions. The number of PUSH and POP instructions
must be equal for all possible paths through a function. Example:

Exanpl e 2. 1. Unmat ched push/ pop
push ebx

test ecx, ecx

jz Fi ni shed

pop ebx
Fi ni shed: ; Wong! Label should be before pop ebx
ret

Here, the value of EBX that is pushed is not popped again if ECX is zero. The result is
that the RET instruction will pop the former value of EBX and jump to a wrong
address.

3. Using a register that is reserved for another purpose. Some compilers reserve the
use of EBP or EBX for a frame pointer or other purpose. Using these registers for a
different purpose in inline assembly can cause errors.

4. Stack-relative addressing after push. When addressing a variable relative to the
stack pointer, you must take into account all preceding instructions that modify the
stack pointer. Example:

Exanpl e 2.2. Stack-rel ative addressing

mov [esp+4], edi

push ebp

push ebx

cnp esi, [esp+4] ; Probably wong!

Here, the programmer probably intended to compare ESI with EDI , but the value of
ESP that is used for addressing has been changed by the two PUSH instructions, so
that ESI is in fact compared with EBP instead.

5. Confusing value and address of a variable. Example:

Exanpl e 2. 3. Val ue versus address (MASM synt ax)

.data

MyVariable DD O ; Define variable

. code

nov eax, MyVariable ; Gets value of MyVariable

nov eax, offset MyVariable; Gets address of MyVariabl e

| ea eax, MyVariable ; Cets address of MyVariable

mov ebx, [eax] ; Cets value of MyVariable through pointer

10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

nov ebx, [100] ; Gets the constant 100 despite brackets
nmov ebx, ds:[100] ; Cets value from address 100

Ignoring calling conventions. It is important to observe the calling conventions for
functions, such as the order of parameters, whether parameters are transferred on
the stack or in registers, and whether the stack is cleaned up by the caller or the
called function. See page 27.

Function name mangling. A C++ code that calls an assembly function should use
extern "C' to avoid name mangling. Some systems require that an underscore ()
is put in front of the name in the assembly code. See page 30.

Forgetting return. A function declaration must end with both RET and ENDP. Using
one of these is not enough. The execution will continue in the code after the
procedure if there is no RET.

Forgetting stack alignment. The stack pointer must point to an address divisible by
16 before any call statement, except in 16-bit systems and 32-bit Windows. See
page 27.

Forgetting shadow space in 64-bit Windows. It is required to reserve 32 bytes of
empty stack space before any function call in 64-bit Windows. See page 29.

Mixing calling conventions. The calling conventions in 64-bit Windows and 64-bit
Linux are different. See page 27.

Forgetting to clean up floating point register stack. All floating point stack registers
that are used by a function must be cleared, typically with FSTP ST(0), before the
function returns, except for ST(0) if it is used for return value. It is necessary to keep
track of exactly how many floating point registers are in use. If a functions pushes
more values on the floating point register stack than it pops, then the register stack
will grow each time the function is called. An exception is generated when the stack
is full. This exception may occur somewhere else in the program.

Forgetting to clear MMX state. A function that uses MMX registers must clear these
with the EMVE instruction before any call or return.

Forgetting to clear YMM state. A function that uses YMM registers must clear these
with the VZEROUPPER or VZERQALL instruction before any call or return.

Forgetting to clear direction flag. Any function that sets the direction flag with STD
must clear it with CLD before any call or return.

Mixing signed and unsigned integers. Unsigned integers are compared using the JB
and JA instructions. Signed integers are compared using the JL and JGinstructions.
Mixing signed and unsigned integers can have unintended consequences.

Forgetting to scale array index. An array index must be multiplied by the size of one
array element. For example nov eax, Ml ntegerArray[ebx*4].

Exceeding array bounds. An array with n elements is indexed from 0 to n- 1, not
from 1 to n. A defective loop writing outside the bounds of an array can cause errors
elsewhere in the program that are hard to find.

Loop with ECX = 0. A loop that ends with the LOOP instruction will repeat 2°? times if
ECX is zero. Be sure to check if ECX is zero before the loop.

11

20. Reading carry flag after | NC or DEC. The | NC and DEC instructions do not change the
carry flag. Do not use instructions that read the carry flag, such as ADC, SBB, JC, JBE,
SETA, etc. after | NC or DEC. Use ADD and SUB instead of | NC and DEC to avoid this
problem.

3 The basics of assembly coding

3.1 Assemblers available

There are several assemblers available for the x86 instruction set, but currently none of
them is good enough for universal recommendation. Assembly programmers are in the
unfortunate situation that there is no universally agreed syntax for x86 assembly. Different
assemblers use different syntax variants. The most common assemblers are listed below.

MASM

The Microsoft assembler is included with Microsoft C++ compilers. Free versions can
sometimes be obtained by downloading the Microsoft Windows driver kit (WDK) or the
platforms software development kit (SDK) or as an add-on to the free Visual C++ Express
Edition. MASM has been a de-facto standard in the Windows world for many years, and the
assembly output of most Windows compilers uses MASM syntax. MASM has many
advanced language features. The syntax is somewhat messy and inconsistent due to a
heritage that dates back to the very first assemblers for the 8086 processor. Microsoft is still
maintaining MASM in order to provide a complete set of development tools for Windows, but
it is obviously not profitable and the maintenance of MASM is apparently kept at a minimum.
New instruction sets are still added regularly, but the 64-bit version has several deficiencies.
The newest version can run only when the compiler is installed and only in Windows XP or
later. Version 6 and earlier can run in any system, including Linux with a Windows emulator.
Such versions are circulating on the web.

GAS

The Gnu assembiler is part of the Gnu Binutils package that is included with most
distributions of Linux, BSD and Mac OS X. The Gnu compilers produce assembly output
that goes through the Gnu assembler before it is linked. The Gnu assembler traditionally
uses the AT&T syntax that works well for machine-generated code, but it is very
inconvenient for human-generated assembly code. The AT&T syntax has the operands in
an order that differs from all other x86 assemblers and from the instruction documentation
published by Intel and AMD. It uses various prefixes like %and $ for specifying operand

types.

Fortunately, newer versions of the Gnu assembler has an option for using Intel syntax
instead. The Gnu-Intel syntax is almost identical to MASM syntax. The Gnu-Intel syntax
defines only the syntax for instruction codes, not for directives, functions, macros, etc. The
directives still use the old Gnu-AT&T syntax. Specify . i nt el _synt ax noprefi x to use the
Intel syntax. Specify . att _synt ax prefix to return to the AT&T syntax before leaving
inline assembly in C or C++ code.

The Gnu assembler is available for all platforms, but the Windows version is currently not
fully up to date.

NASM

NASM is a free open source assembler with support for several platforms and object file
formats. The syntax is more clear and consistent than MASM syntax. NASM has fewer high-
level features than MASM, but it is sufficient for most purposes.

12

YASM

YASM is very similar to NASM and uses exactly the same syntax. YASM has turned out to
be more versatile, stable and reliable than NASM in my tests and to produce better code.
Does not support OMF format. YASM has often been the first assembler to support new
instruction sets. YASM would be my best recommendation for a free multi-platform
assembler if you don't need MASM syntax.

FASM

The Flat assembler is another open source assembler for multiple platforms. The syntax is
not compatible with other assemblers. FASM is itself written in assembly language - an
enticing idea, but unfortunately this makes the development and maintenance of it less
efficient. FASM is currently not fully up to date with the latest instruction sets.

WASM

The WASM assembler is included with the Open Watcom C++ compiler. The syntax
resembles MASM but is somewhat different. Not fully up to date.

JWASM

JWASM is a further development of WASM. It is fully compatible with MASM syntax,
including advanced macro and high level directives. JWASM is a good choice if MASM
syntax is desired.

TASM

Borland Turbo Assembler is included with CodeGear C++ Builder. It is compatible with
MASM syntax except for some newer syntax additions. TASM is no longer maintained but is
still available. It is obsolete and does not support current instruction sets.

HLA

High Level Assembler is actually a high level language compiler that allows assembly-like
statements and produces assembly output. This was probably a good idea at the time it was
invented, but today where the best C++ compilers support intrinsic functions, | believe that
HLA is no longer needed.

Inline assembly

Microsoft and Intel C++ compilers support inline assembly using a subset of the MASM
syntax. It is possible to access C++ variables, functions and labels simply by inserting their
names in the assembly code. This is easy, but does not support C++ register variables. See
page 36.

The Gnu assembler supports inline assembly with access to the full range of instructions
and directives of the Gnu assembiler in both Intel and AT&T syntax. The access to C++
variables from assembly uses a quite complicated method.

The Intel compilers for Linux and Mac systems support both the Microsoft style and the Gnu
style of inline assembly.

Intrinsic functions in C++

This is the newest and most convenient way of combining low-level and high-level code.
Intrinsic functions are high-level language representatives of machine instructions. For
example, you can do a vector addition in C++ by calling the intrinsic function that is
equivalent to an assembly instruction for vector addition. Furthermore, it is possible to
define a vector class with an overloaded + operator so that a vector addition is obtained
simply by writing +. Intrinsic functions are supported by Microsoft, Intel and Gnu compilers.
See page 33 and manual 1: "Optimizing software in C++".

13

Which assembler to choose?

In most cases, the easiest solution is to use intrinsic functions in C++ code. The compiler
can take care of most of the optimization so that the programmer can concentrate on
choosing the best algorithm and organizing the data into vectors. System programmers can
access system instructions by using intrinsic functions without having to use assembly
language.

Where real low-level programming is needed, such as in highly optimized function libraries,
you may use an assembler.

It may be preferred to use an assembler that is compatible with the C++ compiler you are
using. This allows you to use the compiler for translating C++ to assembly, optimize the
assembly code further, and then assembile it. If the assembler is not compatible with the
syntax generated by the compiler then you may generate an object file with the compiler
and disassemble the object file to the assembly syntax you need. The objconv disassembler
supports several different syntax dialects.

The examples in this manual use MASM syntax, unless otherwise noted. The MASM syntax
is described in Microsoft Macro Assembler Reference at msdn.microsoft.com.

See www.agner.org/optimize for links to various syntax manuals, coding manuals and
discussion forums.

3.2 Register set and basic instructions

Registers in 16 bit mode

General purpose and integer registers

Full register Partial register Partial register

bit 0-15 bit 8- 15 bit0-7
AX AH AL
BX BH BL
CX CH CL
DX DH DL
Sl
DI
BP
SP

FI ags
I P
Table 3.1. General purpose registers in 16 bit mode.

The 32-bit registers are also available in 16-bit mode if supported by the microprocessor
and operating system. The high word of ESP should not be used because it is not saved
during interrupts.

Floating point registers

Full register
bit0-79

ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

14

http://www.agner.org/optimize/#objconv
http://msdn.microsoft.com/
http://www.agner.org/optimize

ST(6)

ST(7)

Table 3.2. Floating point stack registers

MMX registers may be available if supported by the microprocessor. XMM registers may be
available if supported by microprocessor and operating system.

Segment registers

Full register
bit 0- 15

CS

DS

ES

SS

Table 3.3. Segment registers in 16 bit mode

Register FS and GS may be available.

Registers in 32 bit mode

General purpose and integer registers

Full register Partial register Partial register Partial register

bit 0 - 31 bit 0 - 15 bit 8 - 15 bit0-7
EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL
ESI Sl
EDI DI
EBP BP
ESP SP

EFl ags Fl ags
El P I P
Table 3.4. General purpose registers in 32 bit mode

Floating point and 64-bit vector registers

Full register Partial register
bit0-79 bit 0 - 63
ST(0) MVD
ST(1) MVIL
ST(2) MR
ST(3) MVB
ST(4) M4
ST(5) MVb
ST(6) VB
ST(7) MV
Table 3.5. Floating point and MMX registers

The MMX registers are only available if supported by the microprocessor. The ST and MMX
registers cannot be used in the same part of the code. A section of code using MMX
registers must be separated from any subsequent section using ST registers by executing
an EMVB instruction.

128- and 256-bit integer and floating point vector registers
15

Full register Full or partial register
bit 0 - 255 bit 0 - 127
YMVD XMVD
YMVIL XMVIL
YMVR XMVP
YMVB XMVB
YMVA XMVA
YMVb XMVb
YMVB XMVB
YMWIY XMW

Table 3.6. XMM and YMM registers in 32 bit mode

The XMM registers are only available if supported both by the microprocessor and the
operating system. Scalar floating point instructions use only 32 or 64 bits of the XMM
registers for single or double precision, respectively. The YMM registers are available only if
the processor and the operating system supports the AVX instruction set.

Segment registers

Full register
bit 0 - 15

CS

DS

ES

FS

GS

SS

Table 3.7. Segment registers in 32 bit mode

Registers in 64 bit mode

General purpose and integer registers

Full register Partial Partial Partial Partial
bit 0 - 63 register register register register
bit 0-31 bit 0 - 15 bit 8 - 15 bit0-7
RAX EAX AX AH AL
RBX EBX BX BH BL
RCX ECX CX CH CL
RDX EDX DX DH DL
RSI ESI S SIL
RDI EDI DI DI L
RBP EBP BP BPL
RSP ESP SP SPL
R8 R8D R8W R8B
RO ROD ROW ROB
R10 R10D R1O0W R10B
R11 R11D R11W R11B
R12 R12D R12W R12B
R13 R13D R13W R13B
R14 R14D R14W R14B
R15 R15D R15W R15B
RFl ags Fl ags
Rl P

Table 3.8. Registers in 64 bit mode

The high 8-bit registers AH, BH, CH, DH can only be used in instructions that have no REX
prefix.

16

Note that modifying a 32-bit partial register will set the rest of the register (bit 32-63) to zero,
but modifying an 8-bit or 16-bit partial register does not affect the rest of the register. This
can be illustrated by the following sequence:

; Exanple 3.1. 8, 16, 32 and 64 bit registers

nmov rax, 1111111111111111H ; rax = 1111111111111111H
nov eax, 22222222H ;. rax = 0000000022222222H
mv ax, 3333H ;. rax = 0000000022223333H
nmov al, 44H ; rax = 0000000022223344H

There is a good reason for this inconsistency. Setting the unused part of a register to zero is
more efficient than leaving it unchanged because this removes a false dependence on
previous values. But the principle of resetting the unused part of a register cannot be
extended to 16 bit and 8 bit partial registers because this would break the backwards
compatibility with 32-bit and 16-bit modes.

The only instruction that can have a 64-bit immediate data operand is MOv. Other integer
instructions can only have a 32-bit sign extended operand. Examples:

; Exanple 3.2. Inmedi ate operands, full and sign extended
nov rax, 1111111111111111H ; Full 64 bit inmedi ate operand

nmov rax, -1 ; 32 bit sign-extended operand

nov eax, OffffffffH ; 32 bit zero-extended operand

add rax, 1 ; 8 bit sign-extended operand

add rax, 100H ; 32 bit sign-extended operand

add eax, 100H ; 32 bit operand. result is zero-extended
nmov rbx, 100000000H ; 64 bit i mediate operand

add rax, rbx ; Use an extra register if big operand

It is not possible to use a 16-bit sign-extended operand. If you need to add an immediate
value to a 64 bit register then it is necessary to first move the value into another register if
the value is too big for fitting into a 32 bit sign-extended operand.

Floating point and 64-bit vector registers
Full register Partial register
bit0-79 bit 0 - 63
ST(0) MVD
ST(1) VML
ST(2) MV2
ST(3) MVB
ST(4) M4
ST(5) MVb
ST(6) MVB
ST(7) MW
Table 3.9. Floating point and MMX registers

The ST and MMX registers cannot be used in the same part of the code. A section of code

using MMX registers must be separated from any subsequent section using ST registers by
executing an EMVBS instruction. The ST and MMX registers cannot be used in device drivers

for 64-bit Windows.

128- and 256-bit integer and floating point vector registers

Full register Full or partial register
bit 0 - 255 bit 0 - 127
YMVD XMVD
YMVIL XMVIL
YMWR XMvR
YMVB XMVB
YMVA4 XMV4

17

YMVb XMVb
YMVB XMVB
YMWZ XMW
YMVB XMvB
YMVD XMVD
YMMLO XMMLO
YVML1 XMML1
YNMML2 XNVML2
YMML3 XMML3
YMML4 XMML4
YMMLS XIMML5
Table 3.10. XMM and YMM registers in 64 bit mode

Scalar floating point instructions use only 32 or 64 bits of the XMM registers for single or
double precision, respectively. The YMM registers are available only if the processor and
the operating system supports the AVX instruction set.

Segment registers

Full register
bit 0-15

CS

FS

GS

Table 3.11. Segment registers in 64 bit mode

Segment registers are only used for special purposes.

3.3 Addressing modes

Addressing in 16-bit mode

16-bit code uses a segmented memory model. A memory operand can have any of these
components:

* A segment specification. This can be any segment register or a segment or group
name associated with a segment register. (The default segment is DS, except if BP is
used as base register). The segment can be implied from a label defined inside a
segment.

» Alabel defining a relocatable offset. The offset relative to the start of the segment is
calculated by the linker.

« An immediate offset. This is a constant. If there is also a relocatable offset then the
values are added.

¢ A base register. This can only be BX or BP.
* Anindex register. This can only be SI or DI . There can be no scale factor.
A memory operand can have all of these components. An operand containing only an

immediate offset is not interpreted as a memory operand by the MASM assembler, even if it
has a []. Examples:

; Exanple 3.3. Menory operands in 16-bit node

MOV AX, DS:[100H] ; Address has segnent and i nmedi ate of f set
ADD AX, MEM Sl] +4 ; Has relocatable offset and index and i nmedi ate

18

Data structures bigger than 64 kb are handled in the following ways. In real mode and
virtual mode (DOS): Adding 1 to the segment register corresponds to adding 10H to the
offset. In protected mode (Windows 3.x): Adding 8 to the segment register corresponds to
adding 10000H to the offset. The value added to the segment must be a multiple of 8.

Addressing in 32-bit mode

32-bit code uses a flat memory model in most cases. Segmentation is possible but only
used for special purposes (e.g. thread environment block in FS).

A memory operand can have any of these components:
» A segment specification. Not used in flat mode.

» Alabel defining a relocatable offset. The offset relative to the FLAT segment group is
calculated by the linker.

*« An immediate offset. This is a constant. If there is also a relocatable offset then the
values are added.

« A base register. This can be any 32 bit register.
* An index register. This can be any 32 bit register except ESP.
« A scale factor applied to the index register. Allowed values are 1, 2, 4, 8.

A memory operand can have all of these components. Examples:

; Exanple 3.4. Menory operands in 32-bit node

nov eax, fs:[10H] ; Address has segnent and i nmedi ate of f set
add eax, neniesi] ; Has relocatable offset and index
add eax, [esp+ecx*4+8] ; Base, index, scale and i medi ate offset

Position-independent code in 32-bit mode

Position-independent code is required for making shared objects (*. so0) in 32-bit Unix-like
systems. The most common method for making position-independent code in 32-bit Linux
and BSD is to use a global offset table (GOT) containing the addresses of all static objects.
The GOT method is quite inefficient because the code has to fetch an address from the
GOT every time it reads or writes data in the data segment. A faster method is to use an
arbitrary reference point, as shown in the following example:

Exampl e 3.5. Position-independent code, 32 bit, YASM syntax
SECTI ON . dat a
al pha: dd 1
bet a: dd 2

SECTI ON . t ext

funca: ; This function returns al pha + beta
cal | get _t hunk_ecx ; get ecx = eip

ref poi nt: ; ecx points here
nov eax, [ecx+al pha-refpoint] ; relative address
add eax, [ecx+beta -refpoint] ; relative address
ret

get _thunk_ecx: ; Function for reading instruction pointer
nov ecx, [esp]

ret

19

The only instruction that can read the instruction pointer in 32-bit mode is the cal |
instruction. In example 3.5 we are using cal | get_t hunk_ecx for reading the instruction
pointer (ei p) into ecx. ecx will then point to the first instruction after the call. This is our
reference point, named r ef poi nt . (get _t hunk_ecx must be a separate function with its
own return because a call without a return would cause mispredictions of subsequent
returns). All objects in the data segment can now be addressed relative to r ef poi nt with
ecx as pointer.

This method is commonly used in Mac systems, where the mach-o file format supports
references relative to an arbitrary point. Other file formats don't support this kind of
reference, but it is possible to use a self-relative reference with an offset. The YASM and
Gnu assemblers will do this automatically, while most other assemblers are unable to
handle this situation. It is therefore necessary to use a YASM or Gnu assembler if you want
to generate position-independent code in 32-bit mode with this method. The code may look
strange in a debugger or disassembler, but it executes without any problems in all 32-bit
x86 operating systems.

The GOT method would use the same reference point method as in example 3.5 for
addressing the GOT, and then use the GOT to read the addresses of al pha and bet a into
other pointer registers. This is an unnecessary waste of time and registers because if we
can access the GOT relative to the reference point, then we can just as well access al pha
and bet a relative to the reference point.

The pointer tables used in swi t ch/case statements can use the same reference point for
the table and for the pointers in the table:

; Exanple 3.6. Position-independent switch, 32 bit, YASM syntax
SECTI ON . dat a

junptabl e: dd casel-refpoint, case2-refpoint, case3-refpoint

SECTI ON . t ext

funch: ; This function inplenents a switch statenent
nov eax, [esp+4] ; function paraneter
call get _t hunk_ecx ; get ecx = eip
r ef poi nt: ; ecx points here
cnp eax, 3
j nb case_defaul t ; index out of range
nov eax, [ecx+eax*4+junptable-refpoint] ; read table entry
The junp addresses are relative to refpoint, get absolute address:
add eax, ecx
jmp eax ; junp to desired case
casel: ...
ret
case2: ...
ret
case3:

ret
case_defaul t:
ret
get _thunk _ecx: ; Function for reading instruction pointer

nov ecx, [esp]
ret

20

Addressing in 64-bit mode

64-bit code always uses a flat memory model. Segmentation is impossible except for FS and
GS which are used for special purposes only (thread environment block, etc.).

There are several different addressing modes in 64-bit mode: RIP-relative, 32-bit absolute,
64-bit absolute, and relative to a base register.

RIP-relative addressing

This is the preferred addressing mode for static data. The address contains a 32-bit sign-
extended offset relative to the instruction pointer. The address cannot contain any segment
register or index register, and no base register other than RI P, which is implicit. Example:

; Exanple 3.7a. RIP-relative nenory operand, MASM synt ax
nov eax, [nmen

; Exanple 3.7b. RIP-relative nenory operand, NASM YASM synt ax
default rel
nov eax, [nen

Exanple 3.7c. RIP-relative nenory operand, Gas/Intel syntax
nov eax, [nmemtrip]

The MASM assembler always generates RIP-relative addresses for static data when no
explicit base or index register is specified. On other assemblers you must remember to
specify relative addressing.

32-bit absolute addressing in 64 bit mode

A 32-bit constant address is sign-extended to 64 bits. This addressing mode works only if it
is certain that all addresses are below 2°' (or above -2*' for system code).

It is safe to use 32-bit absolute addressing in Linux and BSD, where all addresses are
below 2*' by default. It is unsafe in Windows DLL's because they might be relocated to any
address. It will not work in Mac systems, where addresses are above 2°? by default.

Note that NASM, YASM and Gas assemblers can make 32-bit absolute addresses when
you do not explicitly specify rip-relative addresses. You have to specify defaul t rel in
NASM/YASM or [memt+ri p] in Gas to avoid 32-bit absolute addresses.

There is absolutely no reason to use absolute addresses for simple memory operands. Rip-
relative addresses make instructions shorter, they eliminate the need for relocation at load
time, and they are safe to use in all systems.

Absolute addresses are needed only for accessing arrays where there is an index register,
e.g.
; Exanple 3.8. 32 bit absolute addresses in 64-bit node

nov al, [chararray + rsi]
nmov ebx, [intarray + rsi*4]

This method can be used only if the address is guaranteed to be < 2*', as explained above.
See below for alternative methods of addressing static arrays.

The MASM assembler generates absolute addresses only when a base or index register is
specified together with a memory label as in example 3.8 above.

The index register should preferably be a 64-bit register, not a 32-bit register. Segmentation
is possible only with FS or GS.

21

64-bit absolute addressing

This uses a 64-bit absolute virtual address. The address cannot contain any segment
register, base or index register. 64-bit absolute addresses can only be used with the MOV
instruction, and only with AL, AX, EAX or RAX as source or destination.

Exanmple 3.9. 64 bit absol ute address, YASM NASM synt ax
nov eax, dword [qword a]

This addressing mode is not supported by the MASM assembler, but it is supported by
other assemblers.

Addressing relative to 64-bit base register
A memory operand in this mode can have any of these components:

* A base register. This can be any 64 bit integer register.

« An index register. This can be any 64 bit integer register except RSP.

e A scale factor applied to the index register. The only possible values are 1, 2, 4, 8.
« An immediate offset. This is a constant offset relative to the base register.

A base register is always needed for this addressing mode. The other components are
optional. Examples:

Exanmpl e 3.10. Base register addressing in 64 bit node
nov eax, [rsSi]
add eax, [rsp + 4*rcx + 8]

This addressing mode is used for data on the stack, for structure and class members and
for arrays.

Addressing static arrays in 64 bit mode

It is not possible to access static arrays with RIP-relative addressing and an index register.
There are several possible alternatives.

The following examples address static arrays. The C++ code for this example is:

/1 Exanple 3.11la. Static arrays in 64 bit node
/'l C++ code:
static int a[100], b[100];
for (int i =0; i < 100; i++) {
bli] = -a[i];
}

The simplest solution is to use 32-bit absolute addresses. This is possible as long as the
addresses are below 2%'.

; Exanple 3.11b. Use 32-bit absol ute addresses
; (64 bit Linux)
; Assunes that inage base < 80000000H

.data

A DD 100 dup (?) ; Define static array A

B DD 100 dup (?) ; Define static array B

. code

XOor ecx, ecx ;1 =0

TOPOFLOOP: ; Top of | oop

nov eax, [A+rcx*4] ; 32-bit address + scal ed index
neg eax

nov [B+rcx*4], eax ; 32-bit address + scal ed index

22

add ecx, 1
cnp ecx, 100 ;i< 100
jb TOPOFLOOP ; Loop

The assembler will generate a 32-bit relocatable address for A and B in example 3.11b
because it cannot combine a RIP-relative address with an index register.

This method is used by Gnu and Intel compilers in 64-bit Linux to access static arrays. It is
not used by any compiler for 64-bit Windows, | have seen, but it works in Windows as well if
the address is less than 2°'. The image base is typically 2% for application programs and
between 2% and 2% for DLL's, so this method will work in most cases, but not all. This
method cannot normally be used in 64-bit Mac systems because all addresses are above
2% by default.

The second method is to use image-relative addressing. The following solution loads the
image base into register RBX by using a LEA instruction with a Rl P-relative address:

Exanmpl e 3.11c. Address relative to i mage base
64 bit, Wndows only, MASM assenbl er

. data

A DD 100 dup (7?)

B DD 100 dup (7?)

extern _ | mageBase: byte

. code

lea rbx, __lmageBase ; Use RIP-relative address of inmage base
XOor ecx, ecx ;1 =0

TOPOFLOOP: ; Top of | oop

i mgerel (A) = address of A relative to i mage base:
nov eax, [(inagerel A) + rbx + rcx*4]
neg eax
mov [(imagerel B) + rbx + rcx*4], eax
add ecx, 1
cnp ecx, 100
jb TOPOFLOCP

This method is used in 64 bit Windows only. In Linux, the image base is available as
__execut abl e_st art, but image-relative addresses are not supported in the ELF file
format. The Mach-O format allows addresses relative to an arbitrary reference point,
including the image base, which is available as __nh_execut e_header .

The third solution loads the address of array A into register RBX by using a LEA instruction
with a RI P-relative address. The address of B is calculated relative to A.

; Exanpl e 3.11d.
Load address of array into base register
(Al 64-bit systens)

. data

A DD 100 dup (?)

B DD 100 dup (?)

. code

lea rbx, [A] ; Load RIP-relative address of A
Xor ecx, ecx ;i =0

TOPOFLOOP: ; Top of 1 oop

nmov eax, [rbx + 4*rcx] ; Ali]

neg eax

nmv [(B-A) + rbx + 4*rcx], eax ; Use offset of Brelative to A
add ecx, 1
cnp ecx, 100

23

jb TOPOFLOOP

Note that we can use a 32-bit instruction for incrementing the index (ADD ECX, 1), even
though we are using the 64-bit register for index (RCX). This works because we are sure that
the index is non-negative and less than 2%2. This method can use any address in the data
segment as a reference point and calculate other addresses relative to this reference point.

If an array is more than 2°! bytes away from the instruction pointer then we have to load the
full 64 bit address into a base register. For example, we can replace LEA RBX, [A] with
MOV RBX, OFFSET A in example 3.11d.

Position-independent code in 64-bit mode

Position-independent code is rarely required in 64-bit systems, but it is easy to make. Static
data can be accessed with rip-relative addressing. Static arrays can be accessed as in
example 3.11d.

The pointer tables of switch statements can be made relative to an arbitrary reference point.
It may be convenient to use the table itself as the reference point:

; Exanple 3.12. switch with relative pointers, 64 bit, YASM syntax
SECTI ON . dat a
junptabl e: dd casel-junptable, case2-junptable, case3-junptable

SECTI ON . t ext

default rel ; use relative addresses
funcb: ; This function inplenents a switch statenent
nov eax, [rsp+8] ; function paraneter
cnp eax, 3
j nb case_defaul t ; index out of range
| ea rdx, [junptabl e] ; address of table
nmovsxd rax, dword [rdx+rax*4] ; read table entry
The junp addresses are relative to junptable, get absol ute address:
add rax, rdx
jmp rax ; junp to desired case
casel: ...
ret
case2: ...
ret
case3:

ret
case_defaul t:
ret

This method can be useful for reducing the size of long pointer tables because it uses 32-bit
relative pointers rather than 64-bit absolute pointers.

The MASM assembler cannot generate the relative tables in example 3.12 unless the jump
table is placed in the code segment. It is preferred to place the jump table in the data
segment for optimal caching and code prefetching, and this can be done with the YASM or
Gnu assembler.

3.4 Instruction code format

The format for instruction codes is described in detail in manuals from Intel and AMD. The
basic principles of instruction encoding are explained here because of its relevance to
microprocessor performance. In general, you can rely on the assembler for generating the
smallest possible encoding of an instruction.

24

Each instruction can consist of the following elements, in the order mentioned:

1.

Prefixes (0-5 bytes)
These are prefixes that modify the meaning of the opcode that follows. There are
several different kinds of prefixes as described in table 3.12 below.

Opcode (1-3 bytes)
This is the instruction code. The first byte is OFh if there are two or three bytes. The
second byte is 38h - 3Ah if there are three bytes.

mod-reg-r/m byte (0-1 byte)

This byte specifies the operands. It consists of three fields. The mod field is two bits
specifying the addressing mode, the reg field is three bits specifying a register for the
first operand (most often the destination operand), the r/m field is three bits
specifying the second operand (most often the source operand), which can be a
register or a memory operand. The reg field can be part of the opcode if there is only
one operand.

SIB byte (0-1 byte)

This byte is used for memory operands with complex addressing modes, and only if
there is a mod-reg-r/m byte. It has two bits for a scale factor, three bits specifying a
scaled index register, and three bits specifying a base pointer register. A SIB byte is
needed in the following cases:

a. If a memory operand has two pointer or index registers,

b. If a memory operand has a scaled index register,

c. If amemory operand has the stack pointer (ESP or RSP) as base pointer,

d. If a memory operand in 64-bit mode uses a 32-bit sign-extended direct memory
address rather than a RIP-relative address.

A SIB byte cannot be used in 16-bit addressing mode.

Displacement (0, 1, 2, 4 or 8 bytes)

This is part of the address of a memory operand. It is added to the value of the
pointer registers (base or index or both), if any.

A 1-byte sign-extended displacement is possible in all addressing modes if a pointer
register is specified.

A 2-byte displacement is possible only in 16-bit addressing mode.

A 4-byte displacement is possible in 32-bit addressing mode.

A 4-byte sign-extended displacement is possible in 64-bit addressing mode. If there
are any pointer registers specified then the displacement is added to these. If there
is no pointer register specified and no SIB byte then the displacement is added to
RIP. If there is a SIB byte and no pointer register then the sign-extended value is an
absolute direct address.

An 8-byte absolute direct address is possible in 64-bit addressing mode for a few
MOV instructions that have no mod-reg-r/m byte.

Immediate operand (0, 1, 2, 4 or 8 bytes)

This is a data constant which in most cases is a source operand for the operation.
A 1-byte sign-extended immediate operand is possible in all modes for all
instructions that can have immediate operands, except MOV, CALL and RET.

A 2-byte immediate operand is possible for instructions with 16-bit operand size.
A 4-byte immediate operand is possible for instructions with 32-bit operand size.
A 4-byte sign-extended immediate operand is possible for instructions with 64-bit
operand size.

An 8-byte immediate operand is possible only for moves into a 64-bit register.

25

3.5 Instruction prefixes

The following table summarizes the use of instruction prefixes.

prefix for: 16 bit mode | 32 bit mode | 64 bit mode
8 bit operand size none none none
16 bit operand size none 66h 66h
32 bit operand size 66h none none
64 bit operand size n.a. n.a. REX.W (48h)
packed integers in mmx register none none none
packed integers in xmm register 66h 66h 66h
packed single-precision floats in xmm register none none none
packed double-precision floats in xmm register 66h 66h 66h
scalar single-precision floats in xmm register F3h F3h F3h
scalar double-precision floats in xmm register F2h F2h F2h
16 bit address size none 67h n.a.
32 bit address size 67h none 67h
64 bit address size n.a. n.a. none
CS segment 2Eh 2Eh n.a.
DS segment 3Eh 3Eh n.a.
ES segment 26h 26h n.a.
SS segment 36h 36h n.a.
FS segment 64h 64h 64h
GS segment 65h 65h 65h
REP or REPE string operation F3h F3h F3h
REPNE string operation F2h F2h F2h
Locked memory operand FOh FOh FOh
Register R8 - R15, XMVB - XMML5 in reg field n.a. n.a. REX.R (44h)
Register R8 - R15, XM\VB - XMML5 in r/m field n.a. n.a. REX.B (41h)
Register R8 - R15 in SIB.base field n.a. n.a. REX.B (41h)
Register R8 - R15 in SIB.index field n.a. n.a. REX.X (42h)
Register SI L, DI L, BPL, SPL n.a. n.a. REX (40h)
Predict branch taken first time 3Eh 3Eh 3Eh
Predict branch not taken first time 2Eh 2Eh 2Eh
VEX prefix, 2 bytes Cbh C5h C5h
VEX prefix, 3 bytes C4h C4h C4h

Table 3.12. Instruction prefixes

Segment prefixes are rarely needed in a flat memory model. The DS segment prefix is only
needed if a memory operand has base register BP, EBP or ESP and the DS segment is

desired rather than SS.

The lock prefix is only allowed on certain instructions that read, modify and write a memory

operand.

The branch prediction prefixes work only on Pentium 4 and are rarely needed.

There can be no more than one REX prefix. If more than one REX prefix is needed then the
values are OR'ed into a single byte with a value in the range 40h to 4Fh. These prefixes are
available only in 64-bit mode. The bytes 40h to 4Fh are instruction opcodes in 16-bit and
32-bit mode. These instructions (I NC r and DEC r) are coded differently in 64-bit mode.

The prefixes can be inserted in any order, except for the REX and VEX prefixes which must

come after any other prefixes.

26

The future AVX instruction set uses 2- and 3-byte prefixes called VEX prefixes. The VEX
prefixes include bits to replace all 66h, F2h, F3h and REX prefixes as well as the first byte
of two-byte opcodes and the first two bytes of three-byte opcodes. VEX prefixes also
include bits for specifying YMM registers, an extra register operand, and bits for future
extensions. The only prefixes allowed before a VEX prefix are segment prefixes and

address size prefixes. No additional prefixes are allowed after a VEX prefix.

Meaningless, redundant or misplaced prefixes are ignored, except for the LOCK and VEX
prefixes. But prefixes that have no effect in a particular context may have an effect in future

processors.

Unnecessary prefixes may be used instead of NOP's for aligning code, but an excessive
number of prefixes can slow down instruction decoding on some processors.

There can be any number of prefixes as long as the total instruction length does not exceed
15 bytes. For example, a MOV EAX, EBX with ten ES segment prefixes will still work, but it
may take longer time to decode.

4 ABI standards

ABI stands for Application Binary Interface. An ABI is a standard for how functions are
called, how parameters and return values are transferred, and which registers a function is
allowed to change. It is important to obey the appropriate ABI standard when combining
assembly with high level language. The details of calling conventions etc. are covered in
manual 5: "Calling conventions for different C++ compilers and operating systems". The
most important rules are summarized here for your convenience.

4.1 Register usage

16 bit 32 bit 64 bit 64 bit
DOS, Windows, Windows Unix
Windows Unix
Registers that | AX, BX, CX, DX, EAX, ECX, EDX, RAX, RCX, RDX, RAX, RCX, RDX,
can be used ES, ST(0)-ST(7), R8-R11, RSI, RDI,
freely ST(0) -ST(7) XMVD- XMV, ST(0)-ST(7), R8-R11,
YMVD- YMW XMVD- XW\VB, ST(0)-ST(7),
YMWD- YMVb, XMVD- XVML5,
YMVEH YMVIL5H YMVD- YMMLS
Registers that | S|, DI, BP, DS EBX, ESI , EDI , RBX, RSI , RDI , RBX, RBP,
must be EBP RBP, R12-R15, R12-R15
saved and XMVB-XVVL5
restored
Registers that DS, ES, FS, GS,
cannot be SS
changed
Registers (ECX) RCX, RDX, R8,R9, | RDI, RSI, RDX,
used for para- XMVD-XMVB, RCX, R8, R9,
meter transfer YMVD- YMVB XMVD-XMVT,
YMVD- YMWI/
Registers AX, DX, ST(0) EAX, EDX, ST(0) | RAX, XM\VD, RAX, RDX, XM\D,
used for YMMD XMML, YMVD

return values

ST(0), ST(1)

Table 4.1. Register usage

27

The floating point registers ST(0) - ST(7) must be empty before any call or return, except
when used for function return value. The MMX registers must be cleared by EMVS before
any call or return. The YMM registers must be cleared by VZEROUPPER before any call or
return to non-VEX code.

The arithmetic flags can be changed freely. The direction flag may be set temporarily, but
must be cleared before any call or return in 32-bit and 64-bit systems. The interrupt flag
cannot be cleared in protected operating systems. The floating point control word and bit 6-
15 of the MXCSR register must be saved and restored in functions that modify them.

Register FS and GS are used for thread information blocks etc. and should not be changed.
Other segment registers should not be changed, except in segmented 16-bit models.

4.2 Data storage

Variables and objects that are declared inside a function in C or C++ are stored on the stack
and addressed relative to the stack pointer or a stack frame. This is the most efficient way of
storing data, for two reasons. Firstly, the stack space used for local storage is released
when the function returns and may be reused by the next function that is called. Using the
same memory area repeatedly improves data caching. The second reason is that data
stored on the stack can often be addressed with an 8-bit offset relative to a pointer rather
than the 32 bits required for addressing data in the data segment. This makes the code
more compact so that it takes less space in the code cache or trace cache.

Global and static data in C++ are stored in the data segment and addressed with 32-bit
absolute addresses in 32-bit systems and with 32-bit RI P-relative addresses in 64-bit
systems. A third way of storing data in C++ is to allocate space with new or nal | oc. This
method should be avoided if speed is critical.

4.3 Function calling conventions

Calling convention in 16 bit mode DOS and Windows 3.x

Function parameters are passed on the stack with the first parameter at the lowest address.
This corresponds to pushing the last parameter first. The stack is cleaned up by the caller.

Parameters of 8 or 16 bits size use one word of stack space. Parameters bigger than 16 bits
are stored in little-endian form, i.e. with the least significant word at the lowest address. All
stack parameters are aligned by 2.

Function return values are passed in registers in most cases. 8-bit integers are returned in
AL, 16-bit integers and near pointers in AX, 32-bit integers and far pointers in DX:AX,
Booleans in AX, and floating point values in ST(0) .

Calling convention in 32 bit Windows, Linux, BSD, Mac OS X
Function parameters are passed on the stack according to the following calling conventions:

Calling convention Parameter order on stack Parameters removed by

__cdecl First par. at low address Caller

__stdcal | First par. at low address Subroutine

__fastcal | Microsoft First 2 parameters in ecx, edx. Subroutine

and Gnu Restas stdcal |

__fastcal | Borland First 3 parameters in eax, edx, Subroutine

ecx. Restas stdcall
_pascal First par. at high address Subroutine
__thiscal | Microsoft thisinecx. Restas stdcall | Subroutine

28

Table 4.2. Calling conventions in 32 bit mode

The __cdecl calling convention is the default in Linux. In Windows, the __cdecl convention
is also the default except for member functions, system functions and DLL's. Statically
linked modules in . obj and . | i b files should preferably use __cdecl , while dynamic link
libraries in . dl | files should use __st dcal | . The Microsoft, Intel, Digital Mars and
Codeplay compilers use __t hi scal | by default for member functions under Windows, the

Borland compiler uses __cdecl with 't hi s' as the first parameter.

The fastest calling convention for functions with integer parameters is __f ast cal |, but this
calling convention is not standardized.

Remember that the stack pointer is decreased when a value is pushed on the stack. This
means that the parameter pushed first will be at the highest address, in accordance with the
_pascal convention. You must push parameters in reverse order to satisfy the __cdecl and
__stdcal | conventions.

Parameters of 32 bits size or less use 4 bytes of stack space. Parameters bigger than 32
bits are stored in little-endian form, i.e. with the least significant DWORD at the lowest
address, and aligned by 4.

Mac OS X and the Gnu compiler version 3 and later align the stack by 16 before every call
instruction, though this behavior is not consistent. Sometimes the stack is aligned by 4. This
discrepancy is an unresolved issue at the time of writing. See manual 5: "Calling
conventions for different C++ compilers and operating systems" for details.

Function return values are passed in registers in most cases. 8-bit integers are returned in
AL, 16-bit integers in AX, 32-bit integers, pointers, references and Booleans in EAX, 64-bit
integers in EDX: EAX, and floating point values in ST(0) .

See manual 5: "Calling conventions for different C++ compilers and operating systems" for
details about parameters of composite types (st ruct, cl ass, uni on) and vector types
(__n64, __ml28, _nP56).

Calling conventions in 64 bit Windows

The first parameter is transferred in RCX if it is an integer or in XM\VD if itis a f | oat or

doubl e. The second parameter is transferred in RDX or XMML. The third parameter is trans-
ferred in R8 or XM\R. The fourth parameter is transferred in R9 or XMVB. Note that RCX is not
used for parameter transfer if XM\D is used, and vice versa. No more than four parameters
can be transferred in registers, regardless of type. Any further parameters are transferred
on the stack with the first parameter at the lowest address and aligned by 8. Member
functions have 't hi s' as the first parameter.

The caller must allocate 32 bytes of free space on the stack in addition to any parameters
transferred on the stack. This is a shadow space where the called function can save the four
parameter registers if it needs to. The shadow space is the place where the first four
parameters would have been stored if they were transferred on the stack according to the
__cdecl rule. The shadow space belongs to the called function which is allowed to store the
parameters (or anything else) in the shadow space. The caller must reserve the 32 bytes of
shadow space even for functions that have no parameters. The caller must clean up the
stack, including the shadow space. Return values are in RAX or XM\D.

The stack pointer must be aligned by 16 before any CALL instruction, so that the value of
RSP is 8 modulo 16 at the entry of a function. The function can rely on this alignment when
storing XMM registers to the stack.

29

See manual 5: "Calling conventions for different C++ compilers and operating systems" for
details about parameters of composite types (st ruct, cl ass, uni on) and vector types
(__n64, __ml28, __nP56).

Calling conventions in 64 bit Linux, BSD and Mac OS X

The first six integer parameters are transferred in RDI , RSI , RDX, RCX, R8, R9, respectively.
The first eight floating point parameters are transferred in XMvD - XMv7. All these registers
can be used, so that a maximum of fourteen parameters can be transferred in registers. Any
further parameters are transferred on the stack with the first parameters at the lowest
address and aligned by 8. The stack is cleaned up by the caller if there are any parameters
on the stack. There is no shadow space. Member functions have 't hi s' as the first
parameter. Return values are in RAX or XM\VD.

The stack pointer must be aligned by 16 before any CALL instruction, so that the value of
RSP is 8 modulo 16 at the entry of a function. The function can rely on this alignment when
storing XMM registers to the stack.

The address range from [RSP- 1] to [RSP- 128] is called the red zone. A function can safely
store data above the stack in the red zone as long as this is not overwritten by any PUSH or
CALL instructions.

See manual 5: "Calling conventions for different C++ compilers and operating systems" for
details about parameters of composite types (st ruct, cl ass, uni on) and vector types
(__nbB4, nml28, nR56).

4.4 Name mangling and name decoration

The support for function overloading in C++ makes it necessary to supply information about
the parameters of a function to the linker. This is done by appending codes for the
parameter types to the function name. This is called name mangling. The name mangling
codes have traditionally been compiler specific. Fortunately, there is a growing tendency
towards standardization in this area in order to improve compatibility between different
compilers. The name mangling codes for different compilers are described in detail in
manual 5: "Calling conventions for different C++ compilers and operating systems".

The problem of incompatible name mangling codes is most easily solved by using
extern "C' declarations. Functions with extern "C' declaration have no name
mangling. The only decoration is an underscore prefix in 16- and 32-bit Windows and 32-
and 64-bit Mac OS. There is some additional decoration of the name for functions with
__stdcall and __fastcal | declarations.

The extern "C' declaration cannot be used for member functions, overloaded functions,
operators, and other constructs that are not supported in the C language. You can avoid
name mangling in these cases by defining a mangled function that calls an unmangled
function. If the mangled function is defined as inline then the compiler will simply replace the
call to the mangled function by the call to the unmangled function. For example, to define an
overloaded C++ operator in assembly without name mangling:

cl ass CI;

/'l unmangl ed assenbly function;

extern "C'" Cl cplus (Cl const & a, Cl const & b);

/'l mangl ed C++ operator

inline Cl operator + (Cl const & a, Cl const & b) {
/'l operator + replaced inline by function cplus
return cplus(a, b);

}
30

Overloaded functions can be inlined in the same way. Class member functions can be
translated to friend functions as illustrated in example 7.1b page 49.

4.5 Function examples

The following examples show how to code a function in assembly that obeys the calling
conventions. First the code in C++:

/'l Exanple 4.1la

extern "C' doubl e sinxpnx (double x, int n) {
return sin(x) + n * x;

}

The same function can be coded in assembly. The following examples show the same
function coded for different platforms.

; Exanple 4.1b. 16-bit DOS and W ndows 3. X
ALl GN 4
_sinxpnx PROC NEAR
par ameter x [SP+2]
paranmeter n SP+10]
; return value = ST(0)

push bp ; bp nust be saved

nov bp, sp ; stack frane

fild word ptr [bp+12] ; n

fld gword ptr [bp+4] ; X

frul st(l), st(0) ; N*X

fsin 7 sin(x)

f add 7 sin(x) + n*x

pop bp ; restore bp

ret ; return value is in st(0)

_sinxpnx ENDP

In 16-bit mode we need BP as a stack frame because SP cannot be used as base pointer.
The integer n is only 16 bits. | have used the hardware instruction FSI N for the si n function.

; Exanple 4.1c. 32-bit Wndows

EXTRN _sin:near

ALl GN 4

_sinxpnx PROC near

; paraneter X [ESP+4]

; paraneter n [ESP+12]
return value = ST(0)

fld gword ptr [esp+4] ; X

sub esp, 8 ; make space for paraneter x

fstp qword ptr [esp] ; store paraneter for sin; clear st(0)
call _sin ; library function for sin()

add esp, 8 ; clean up stack after cal

fild dword ptr [esp+12] ; n

frul qword ptr [esp+4] ; n*x

f add i sin(x) + n*x

ret ; return value is in st(0)

_sinxpnx ENDP
Here, | have chosen to use the library function _si n instead of FSI N. This may be faster in

some cases because FSI N gives higher precision than needed. The parameter for _si n is
transferred as 8 bytes on the stack.

31

; Exanple 4.1d. 32-bit Linux

EXTRN si n: near

ALI GN 4

si nxpnx PROC near

; paraneter X [ESP+4]
paranmeter n [ESP+12]
return value = ST(0)

fld gword ptr [esp+4] ; X

sub esp, 12 ; Keep stack aligned by 16 before cal
fstp qword ptr [esp] ; Store paraneter for sin; clear st(0)
call sin ; Library proc. may be faster than fsin
add esp, 12 ; Clean up stack after cal

fild dword ptr [esp+12] ; n

frul qword ptr [esp+4] ; n*x

f add ;o sin(x) + n*x

ret ; Return value is in st(0)

si nxpnx ENDP

In 32-bit Linux there is no underscore on function names. The stack must be kept aligned by
16 in Linux (GCC version 3 or later). The call to si nxpnx subtracts 4 from ESP. We are
subtracting 12 more from ESP so that the total amount subtracted is 16. We may subtract
more, as long as the total amount is a multiple of 16. In example 4.1c we subtracted only 8
from ESP because the stack is only aligned by 4 in 32-bit Windows.

; Exanple 4.1e. 64-bit Wndows
EXTRN si n: near
ALI GN 4
Si nxpnx PROC
par anmeter x
paranmeter n
; return value = xmD

= X
= e

push r bx ; rbx nmust be saved
novaps [rsp+16], xnmb ; save xmmbB in nmy shadow space
sub rsp, 32 ; shadow space for call to sin
nov ebx, edx ; save n
novsd X6, xmmD ; save X
cal | sin ; xmD = si n(xnmmD)
cvtsi 2sd xmil, ebx ; convert n to double
mul sd xnmil, xnmb ;on*oXx
addsd xnm0, xmmil ;osin(x) + n* x
add rsp, 32 ; restore stack pointer
novaps Xm6, [rsp+16] ; restore xnmb
pop r bx ; restore rbx
ret ; return value is in xmD
Si nxpnx ENDP

Function parameters are transferred in registers in 64-bit Windows. ECX is not used for
parameter transfer because the first parameter is not an integer. We are using RBX and
XMVB for storing n and x across the call to si n. We have to use registers with callee-save
status for this, and we have to save these registers on the stack before using them. The
stack must be aligned by 16 before the call to si n. The call to si nxpnx subtracts 8 from
RSP; the PUSH RBX instruction subtracts 8; and the SUB instruction subtracts 32. The total
amount subtracted is 8+8+32 = 48, which is a multiple of 16. The extra 32 bytes on the
stack is shadow space for the call to si n. Note that example 4.1e does not include support
for exception handling. It is necessary to add tables with stack unwind information if the
program relies on catching exceptions generated in the function si n.

Exampl e 4. 1f. 64-bit Linux
EXTRN si n: near
ALI GN 4

32

Si nxpnx PRCC

PUBLI C Si nxpnx
paranmeter x = xmm0

; paraneter n = ed

; return value = xmD

push r bx

sub rsp, 16
novaps [rsp], xnmD
nov ebx, ed

cal | sin

cvtsi 2sd xnmml, ebx
nmul sd xmmil, [rsp]
addsd xmrD, xmml

rbx must be saved

nmake | ocal space and align stack by 16
save X

save n

xmD = sin(xmD)

convert n to double

n* x

sin(x) + n* x

add rsp, 16 restore stack pointer

pop r bx restore rbx

ret return value is in xnD
Si nxpnx ENDP

64-bit Linux does not use the same registers for parameter transfer as 64-bit Windows
does. There are no XMM registers with callee-save status, so we have to save x on the
stack across the call to si n, even though saving it in a register might be faster (Saving x in
a 64-bit integer register is possible, but slow). n can still be saved in a general purpose
register with callee-save status. The stack is aligned by 16. There is no need for shadow
space on the stack. The red zone cannot be used because it would be overwritten by the
call to si n. Note that example 4.1f does not include support for exception handling. It is
necessary to add tables with stack unwind information if the program relies on catching
exceptions generated in the function si n.

5 Using intrinsic functions in C++

As already mentioned, there are three different ways of making assembly code: using
intrinsic functions and vector classes in C++, using inline assembly in C++, and making
separate assembly modules. Intrinsic functions are described in this chapter. The other two
methods are described in the following chapters.

Intrinsic functions and vector classes are highly recommended because they are much
easier and safer to use than assembly language syntax.

The Microsoft, Intel and Gnu C++ compilers have support for intrinsic functions. Most of the
intrinsic functions generate one machine instruction each. An intrinsic function is therefore
equivalent to an assembly instruction.

Coding with intrinsic functions is a kind of high-level assembly. It can easily be combined
with C++ language constructs such as i f -statements, loops, functions, classes and
operator overloading. Using intrinsic functions is an easier way of doing high level assembly
coding than using . i f constructs etc. in an assembler or using the so-called high level
assembler (HLA).

The invention of intrinsic functions has made it much easier to do programming tasks that
previously required coding with assembly syntax. The advantages of using intrinsic
functions are:

* No need to learn assembly language syntax.

e Seamless integration into C++ code.

33

Branches, loops, functions, classes, etc. are easily made with C++ syntax.
The compiler takes care of calling conventions, register usage conventions, etc.

The code is portable to almost all x86 platforms: 32-bit and 64-bit Windows, Linux,
Mac OS, etc. Some intrinsic functions can even be used on Itanium and other non-
x86 platforms.

The code is compatible with Microsoft, Gnu and Intel compilers.

The compiler takes care of register variables, register allocation and register spilling.
The programmer doesn't have to care about which register is used for which
variable.

Different instances of the same inlined function or operator can use different
registers for its parameters. This eliminates the need for register-to-register moves.
The same function coded with assembly syntax would typically use a specific
register for each parameter; and a move instruction would be required if the value
happens to be in a different register.

It is possible to define overloaded operators for the intrinsic functions. For example,
the instruction that adds two 4-element vectors of floats is coded as ADDPS in
assembly language, and as _nmm add_ps when intrinsic functions are used. But an
overloaded operator can be defined for the latter so that it is simply coded as a +
when using the so-called vector classes. This makes the code look like plain old
C++.

The compiler can optimize the code further, for example by common subexpression
elimination, loop-invariant code motion, scheduling and reordering, etc. This would
have to be done manually if assembly syntax was used. The Gnu and Intel compilers
provide the best optimization.

The disadvantages of using intrinsic functions are:

Not all assembly instructions have intrinsic function equivalents.

The function names are sometimes long and difficult to remember.

An expression with many intrinsic functions looks kludgy and is difficult to read.
Requires a good understanding of the underlying mechanisms.

The compilers may not be able to optimize code containing intrinsic functions as
much as it optimizes other code, especially when constant propagation is needed.

Unskilled use of intrinsic functions can make the code less efficient than simple C++
code.

The compiler can modify the code or implement it in a less efficient way than the
programmer intended. It may be necessary to look at the code generated by the
compiler to see if it is optimized in the way the programmer intended.

Mixture of __nl28 and __ nP56 types can cause severe delays if the programmer
doesn't follow certain rules. Call _rm®256_zer oupper () before any transition from
modules compiled with AVX enabled to modules or library functions compiled
without AVX.

34

5.1 Using intrinsic functions for system code

Intrinsic functions are useful for making system code and access system registers that are
not accessible with standard C++. Some of these functions are listed below.

Functions for accessing system registers:

__rdtsc, __readpnt, __readnmsr, _ readcrO, readcr2, _ readcr3,_ _readcr4,
__readcr8, witecrO, witecr3, witecr4, witecr8, witensr,

_mm getcsr, _nmsetcsr, __getcal |l ersefl ags.

Functions for input and output:
__inbyte, inword, _indword, _outbyte, outword, _outdword.

Functions for atomic memory read/write operations:
_Interl ockedExchange, etc.

Functions for accessing FS and GS segments:
__readfsbyte, witefshyte, etc.

Cache control instructions (Require SSE or SSEZ2 instruction set):
_mm prefetch, mmstream si 32, nmstream pi, nm stream si 128, ReadBarri er,
_WiteBarrier, ReadWiteBarrier, mm sfence.

Other system functions:
__cpuid, __debugbreak, disable, enable.

5.2 Using intrinsic functions for instructions not available in standard C++

Some simple instructions that are not available in standard C++ can be coded with intrinsic
functions, for example functions for bit-rotate, bit-scan, etc.:

_rotl8, rotr8, rotl16, rotrl6, rotl, rotr, _rotl64, rotr64, BitScanForward,
_Bit ScanRever se.

5.3 Using intrinsic functions for vector operations

Vector instructions are very useful for improving the speed of code with inherent parallelism.
There are intrinsic functions for almost all vector operations using the MMX and XMM
registers.

The use of these intrinsic functions for vector operations is thoroughly described in manual
1: "Optimizing software in C++".

5.4 Availability of intrinsic functions

The intrinsic functions are available on newer versions of Microsoft, Gnu and Intel
compilers. Most intrinsic functions have the same names in all three compilers. You have to
include a header file named i ntri n. h oremni ntri n. h to get access to the intrinsic
functions. The Codeplay compiler has limited support for intrinsic vector functions, but the
function names are not compatible with the other compilers.

The intrinsic functions are listed in the help documentation for each compiler, in the
appropriate header files, in msdn.microsoft.com, in "Intel 64 and IA-32 Architectures
Software Developer’s Manual", volume 2A and 2B (developer.intel.com) and in "Intel
Intrinsic Guide" (softwareprojects.intel.com/avx/).

35

http://msdn.microsoft.com/
http://developer.intel.com/
http://softwareprojects.intel.com/avx/

6 Using inline assembly in C++
Inline assembly is another way of putting assembly code into a C++ file. The keyword asmor

_asmor__asmor__asm _ tells the compiler that the code is assembly. Different compilers
have different syntaxes for inline assembly. The different syntaxes are explained below.
The advantages of using inline assembly are:

e ltis easy to combine with C++.

» Variables and other symbols defined in C++ code can be accessed from the
assembly code.

¢ Only the part of the code that cannot be coded in C++ is coded in assembly.

» All assembly instructions are available.

¢ The code generated is exactly what you write.

* ltis possible to optimize in details.

« The compiler takes care of calling conventions, name mangling and saving registers.
» The compiler can inline a function containing inline assembly.

« Portable to different x86 platforms when using the Intel compiler.

The disadvantages of using inline assembly are:
» Different compilers use different syntax.
¢ Requires knowledge of assembly language.
* Requires a good understanding of how the compiler works. It is easy to make errors.

e The allocation of registers is mostly done manually. The compiler may allocate
different registers for the same variables.

¢ The compiler cannot optimize well across the inline assembly code.
» It may be difficult to control function prolog and epilog code.

e It may not be possible to define data.

* It may not be possible to use macros and other directives.

e It may not be possible to make functions with multiple entries.

* You may inadvertently mix VEX and non-VEX instructions, whereby large penalties
are incurred.

* The Microsoft compiler does not support inline assembly on 64-bit platforms.
e The Borland compiler is poor on inline assembly.

The following sections illustrate how to make inline assembly with different compilers.
36

6.1 MASM style inline assembly

The most common syntax for inline assembly is a MASM-style syntax. This is the easiest
way of making inline assembly and it is supported by most compilers, but not the Gnu
compiler. Unfortunately, the syntax for inline assembly is poorly documented or not
documented at all in the compiler manuals. | will therefore briefly describe the syntax here.

The following examples show a function that raises a floating point number x to an integer
power n. The algorithm is to multiply x", x2, x*, x®, etc. according to each bit in the binary
representation of n. Actually, it is not necessary to code this in assembly because a good
compiler will optimize it almost as much when you just write pow(x, n) . My purpose here is
just to illustrate the syntax of inline assembly.

First the code in C++ to illustrate the algorithm:

/1 Exanple 6.l1a. Raise double x to the power of int n.
doubl e i pow (double x, int n) {

unsi gned int nn = abs(n); /1 absolute value of n
double y = 1.0; /1 used for nultiplication
while (nn !'=0) { /1 1oop for each bit in nn

if (nn & 1) y *= x; /1 multiply if bit =1

X *= X; /'l square x

nn >>= 1; /1 get next bit of nn
if (n<0) vy =101y, /1 reciprocal if nis negative
return vy, /1 returny = pow X, n)

}

And then the optimized code using inline assembly with MASM style syntax:

/1 Exanple 6.1b. MASM style inline assenbly, 32 bit node
doubl e i pow (double x, int n) {

__asm{

nov eax, n /1 Move n to eax
/1 abs(n) is calculated by inverting all bits and adding 1 if n < O:

cdq /1l Get sign bit into all bits of edx
xor eax, edx /1 Invert bits if negative
sub eax, edx /1 Add 1 if negative. Now eax = abs(n)
fldl /1 st(0) = 1.0
jz L9 /1 End if n =0
fld gword ptr x /1 st(0) =x, st(1) = 1.0
jmp L2 /1 Junp into | oop

L1: /1 Top of | oop
frmul st(0), st(0) // Square x

L2: /1 Loop entered here
shr eax, 1 /] Get each bit of ninto carry flag
jnc L1 /1 No carry. Skip nmultiplication, goto next
frul st(1), st(0) // Miltiply by x squared i tines for bit #
jnz L1 /1 End of |oop. Stop when nn = 0
fstp st(0) /1 Discard st(0)
test edx, edx /1 Test if n was negative
jns L9 /1 Finish if n was not negative
fldl /1 st(0) = 1.0, st(1l) = x"abs(n)
fdivr /1 Reci procal

L9: /'l Finish

} /1 Result is in st(0)

#pragma war ni ng(di sabl e: 1011) // Don't warn for mssing return val ue

}

37

Note that the function entry and parameters are declared with C++ syntax. The function
body, or part of it, can then be coded with inline assembly. The parameters x and n, which
are declared with C++ syntax, can be accessed directly in the assembly code using the
same names. The compiler simply replaces x and n in the assembly code with the
appropriate memory operands, probably [esp+4] and [esp+12] . If the inline assembly
code needs to access a variable that happens to be in a register, then the compiler will store
it to a memory variable on the stack and then insert the address of this memory variable in
the inline assembly code.

The result is returned in st (0) according to the 32-bit calling convention. The compiler will
normally issue a warning because there is noreturn y; statement in the end of the
function. This statement is not needed if you know which register to return the value in. The
#pragnma war ni ng(di sabl e: 1011) removes the warning. If you want the code to work with
different calling conventions (e.g. 64-bit systems) then it is necessary to store the result in a
temporary variable inside the assembly block:

/1l Exanple 6.1c. MASM styl e, independent of calling convention
doubl e i pow (double x, int n) {

doubl e result; /1 Define tenmporary variable for result
__asm{

nov eax, n

cdq

xor eax, edx
sub eax, edx
fldl
jz L9
fld gword ptr x
jmp L2
L1:frmul st(0), st(0)
L2:shr eax, 1
jnc L1
frul st(1), st(0)
jnz L1
fstp st(0)
test edx, edx
jns L9
fldl
fdivr
L9:fstp qword ptr result // store result to tenporary variable

}

return result;

}

Now the compiler takes care of all aspects of the calling convention and the code works on
all x86 platforms.

The compiler inspects the inline assembly code to see which registers are modified. The
compiler will automatically save and restore these registers if required by the register usage
convention. In some compilers it is not allowed to modify register ebp or ebx in the inline
assembly code because these registers are needed for a stack frame. The compiler will
generally issue a warning in this case.

It is possible to remove the automatically generated prolog and epilog code by adding
__decl spec(naked) to the function declaration. In this case it is the responsibility of the
programmer to add any necessary prolog and epilog code and to save any modified
registers if necessary. The only thing the compiler takes care of in a naked function is name
mangling. Automatic variable name substitution may not work with naked functions because
it depends on how the function prolog is made. A naked function cannot be inlined.

38

Accessing reqister variables

Register variables cannot be accessed directly by their symbolic names in MASM-style
inline assembly. Accessing a variable by name in an inline assembly code will force the
compiler to store the variable to a temporary memory location.

If you know which register a variable is in then you can simply write the name of the
register. This makes the code more efficient but less portable.

For example, if the code in the above example is used in 64-bit Windows, then x will be in
register XMVD and n will be in register EDX. Taking advantage of this knowledge, we can
improve the code:

/1 Exanple 6.1d. MASM style, 64-bit W ndows
doubl e i pow (double x, int n) {

const double one = 1.0; /1 define constant 1.0
__asm{ /1 x is in xmD

nov eax, edx /1 get n into eax

cdq

xor eax, edx
sub eax, edx

novsd xmil, one /1 load 1.0
jz L9
jmp L2
L1: mul sd xnmD, xnmmD /'l square x
L2:shr eax, 1
jnc L1
mul sd xml, xnmD /1 Multiply by x squared i tines
jnz L1
novsd xmm®O, xmml /1 Put result in xmmD
test edx, edx
jns L9
novsd xmD, one
di vsd xnm0D, xmml /'l Reci proca
L9: }

#pragma war ni ng(di sabl e: 1011) // Don't warn for mssing return val ue
In 64-bit Linux we will have n in register EDI so the line nov eax, edx should be changed
to nmov eax, edi .

Accessing class members and structure members
Let's take as an example a C++ class containing a list of integers:

/1 Exanple 6.2a. Accessing class data menbers
/1 define Ct+ class
class MyList {

pr ot ect ed:
int length; /1 Number of itens in |ist
int buffer[100]; /1l Store itens
public:
MyLi st () ; /1 Constructor
void Attltem(int item; /1 Add itemto |ist
int Sum(); /1 Conpute sum of itens
MyLi st:: MyList() { /1 Constructor
length = 0;}

void MyList::Attlten(int item { // Add itemto |ist
if (length < 100) {
buffer[length++] = item

39

}

int MyList::Sum() { /1 Menber function Sum
int i, sum= 0;
for (i =0; i <length; i++) sum+= buffer[i];

return sum}

Below, | will show how to code the member function MyLi st : : Sum in inline assembly. |
have not tried to optimize the code, my purpose here is simply to show the syntax.

Class members are accessed by loading 't hi s' into a pointer register and addressing class
data members relative to the pointer with the dot operator (.).

/1 Exanple 6.2b. Accessing class nmenbers (32-bit)
int MyList::Sum() {

__asm{
nov ecx, this /1 'this' pointer
Xor eax, eax [/ sum =0
xor edx, edx /1 loop index, i =0
cnp [ecx].length, O /1 if (this->length !'= 0)
je L9
L1: add eax, [ecx].buffer[edx*4] // sum += buffer[i]
add edx, 1 [0 ++
cnp edx, [ecx].length /1 while (i < length)
jb L1
L9:
} /1 Return value is in eax

#pragma war ni ng(di sabl e: 1011)
}

Here the 't hi s' pointer is accessed by its name 't hi s', and all class data members are
addressed relative to 't hi s'. The offset of the class member relative to 't hi s' is obtained by
writing the member name preceded by the dot operator. The index into the array named
buf f er must be multiplied by the size of each element in buffer [edx* 4] .

Some 32-bit compilers for Windows put 't hi s’ in ecx, so the instruction nov ecx, this can
be omitted. 64-bit systems require 64-bit pointers, so ecx should be replaced by r cx and
edx by r dx. 64-bit Windows has 't hi s'in r cx, while 64-bit Linux has 't hi s"inrdi .

Structure members are accessed in the same way by loading a pointer to the structure into
a register and using the dot operator. There is no syntax check against accessing pri vat e
and pr ot ect ed members. There is no way to resolve the ambiguity if more than one
structure or class has a member with the same name. The MASM assembler can resolve
such ambiguities by using the assune directive or by putting the name of the structure
before the dot, but this is not possible with inline assembly.

Calling functions

Functions are called by their name in inline assembly. Member functions can only be called
from other member functions of the same class. Overloaded functions cannot be called
because there is no way to resolve the ambiguity. It is not possible to use mangled function
names. It is the responsibility of the programmer to put any function parameters on the
stack or in the right registers before calling a function and to clean up the stack after the
call. It is also the programmer's responsibility to save any registers you want to preserve
across the function call, unless these registers have callee-save status.

Because of these complications, | will recommend that you go out of the assembly block
and use C++ syntax when making function calls.

40

Syntax overview

The syntax for MASM-style inline assembly is not well described in any compiler manual |
have seen. | will therefore summarize the most important rules here.

In most cases, the MASM-style inline assembly is interpreted by the compiler without
invoking any assembler. You can therefore not assume that the compiler will accept
anything that the assembler understands.

The inline assembly code is marked by the keyword __asm Some compilers allow the alias
_asm The assembly code must be enclosed in curly brackets {} unless there is only one
line. The assembly instructions are separated by newlines. Alternatively, you may separate
the assembly instructions by the __asm keyword without any semicolons.

Instructions and labels are coded in the same way as in MASM. The size of memory
operands can be specified with the PTR operator, for example | NC DWORD PTR [ESI]. The
names of instructions and registers are not case sensitive.

Variables, functions, and got o labels declared in C++ can be accessed by the same names
in the inline assembly code. These names are case sensitive.

Data members of structures, classes and unions are accessed relative to a pointer register
using the dot operator.

Comments are initiated with a semicolon (;) or a double slash (/ /).

Hard-coded opcodes are made with _eni t followed by a byte constant, where you would
use DB in MASM. For example _enit 0x90 is equivalent to NOP.

Directives and macros are not allowed.
The compiler takes care of calling conventions and register saving for the function that

contains inline assembly, but not for any function calls from the inline assembly.

Compilers using MASM style inline assembly

MASM-style inline assembly is supported by 16-bit and 32-bit Microsoft C++ compilers, but
the 64-bit Microsoft compiler has no inline assembly.

The Intel C++ compiler supports MASM-style inline assembly in both 32-bit and 64-bit
Windows as well as 32-bit and 64-bit Linux (and Mac OS ?). This is the preferred compiler
for making portable code with inline assembly. The Intel compiler under Linux requires the
command line option - use- nsasm to recognize this syntax for inline assembly. Only the
keyword __asm works in this case, not the synonyms asm or __asm__. The Intel compiler
converts the MASM syntax to AT&T syntax before sending it to the assembler. The Intel
compiler can therefore be useful as a syntax converter.

The MASM-style inline assembly is also supported by Borland, Digital Mars, Watcom and
Codeplay compilers. The Borland assembler is not up to date and the Watcom compiler has
some limitations on inline assembly.

6.2 Gnu style inline assembly

Inline assembly works quite differently on the Gnu compiler because the Gnu compiler
compiles via assembly rather than producing object code directly, as most other compilers

41

do. The assembly code is entered as a string constant which is passed through to the
assembler with very little change. The default syntax is the AT&T syntax that the Gnu
assembler uses.

The Gnu-style inline assembly has the advantage that you can pass on any instruction or
directive to the assembler. Everything is possible. The disadvantage is that the syntax is
very elaborate and difficult to learn, as the examples below show.

The Gnu-style inline assembly is supported by the Gnu compiler and the Intel compiler for
Linux in both 32-bit and 64-bit mode.

AT&T syntax
Let's return to example 6.1b and translate it to Gnu style inline assembly with AT&T syntax:

/1 Exanple 6.1le. Gau-style inline assenbly, AT&T syntax
doubl e i pow (double x, int n) {

doubl e vy;
_asm__ (
"cltd \n" // cdqg
"“xorl 9%edx, YWeax \'n"
"subl %edx, YWeax \'n"
"fldl \n"
"jz of \n" // Forward junp to nearest 9:
"fldl 9% xx] \n" // Substituted with x
"jmp 2f \n" // Forward junmp to nearest 2:
"1 \n" // Local |abel 1:
"frul %t (0), %Wst(0) \n"
"2: \n" // Local I|abel 2:
"shrl $1, %eax \n"
"jnc 1b \n" // Backward junp to nearest 1:
“frul %st(0), XWst(1l) \n"
"inz 1b \n" // Backward junp to nearest 1:
"fstp %t (0) \n"
"testl 9%edx, %Wedx \n"
"jns 9f \n" // Forward junmp to nearest 9:
"fldl \n"

"fdivp %Wst(0), %Wst(1)\n"
"9: \n" // Assenbly string ends here

/1 Use extended assenbly syntax to specify operands:
/1 Qutput operands:
D=ttt (y) /1 Qutput top of stack to vy

/1 1nput operands:
[xx] "m' (x), "a" (n) /1 1nput operand %4 xx] = X, eax = n

/1 Cl obbered registers:
"%edx", "%t (1)" /1 C obber edx and st (1)
) /1 __asm__ statement ends here

return vy;

}

We immediately notice that the syntax is very different from the previous examples. Many of
the instruction codes have suffixes for specifying the operand size. Integer instructions use
b for BYTE, wfor WORD, | for DWORD, g for QAORD. Floating point instructions use s for DWORD
(fl oat), | for QAORD (doubl e), t for TBYTE (I ong doubl e). Some instruction codes are
completely different, for example CDQis changed to CLTD. The order of the operands is the
opposite of MASM syntax. The source operand comes before the destination operand.
Register names have %oprefix, which is changed to %before the string is passed on to the

42

assembler. Constants have $ prefix. Memory operands are also different. For example,
[ebx+ecx*4+20h] is changed to 0x20(%8&bx, Y@ecx, 4) .

Jump labels can be coded in the same way as in MASM, e.g. L1:, L2:, but | have chosen to
use the syntax for local labels, which is a decimal number followed by a colon. The jump
instructions can then use j np 1b for jumping backwards to the nearest preceding 1:

label, and j np 1f for jumping forwards to the nearest following 1: label. The reason why |
have used this kind of labels is that the compiler will produce multiple instances of the inline
assembly code if the function is inlined, which is quite likely to happen. If we use normal
labels like L1: then there will be more than one label with the same name in the final
assembily file, which of course will produce an error. If you want to use normal labels then
add _ attribute_ ((noinline)) tothe function declaration to prevent inlining of the
function.

The Gnu style inline assembly does not allow you to put the names of local C++ variables
directly into the assembly code. Only global variable names will work because they have the
same names in the assembly code. Instead you can use the so-called extended syntax as
illustrated above. The extended syntax looks like this:

__asm__ ("assenbly code string" : [output list] : [input list]
[cl obbered registers list]);

The assembly code string is a string constant containing assembly instructions separated by
newline characters (\ n).

In the above example, the output listis "=t" (y). t means the top-of-stack floating point
register st (0), and y means that this should be stored in the C++ variable named y after
the assembly code string.

There are two input operands in the input list. [xx] "n' (x) means replace % xx] in the
assembly string with a memory operand for the C++ variable x. "a" (n) means load the
C++ variable n into register eax before the assembly string. There are many different
constraints symbols for specifying different kinds of operands and registers for input and
output. See the GCC manual for details.

The clobbered registers list "%edx", "%t (1)" tells that registers edx and st (1) are
modified by the inline assembly code. The compiler would falsely assume that these
registers were unchanged if they didn't occur in the clobber list.

Intel syntax

The above example will be a little easier to code if we use Intel syntax for the assembly
string. The Gnu assembler now accepts Intel syntax with the directive . i ntel _synt ax
noprefix. The noprefix means that registers don't need a %sign as prefix.

/1 Exanple 6.1f. Ghu-style inline assenbly, Intel syntax
doubl e i pow (double x, int n) {

doubl e vy;
asm (
"“.intel _syntax noprefix \n" // use Intel syntax for convenience
"cdq \'n"
"xor eax, edx \n"
"sub eax, edx \n"
"fldl \n"
"jz of \n"
".att_syntax prefix \n" // AT&T syntax needed for 9% xx]
“fldl 9% xx] \n" // menmory operand substituted with x

"“.intel _syntax noprefix \n" // switch to Intel syntax again

43

"jp 2f \n"

"1 \n"
“frul st(0), st(0) \'n"
"2 \n"
"shr eax, 1 \n"
"jnc 1b \'n"
“frul st(1), st(0) \'n"
"jnz 1b \'n"
"fstp st(0) \n"
"test edx, edx \n"
"jns 9f \'n"
"fldl \n"
"“fdivrp \n"
"9: \n"
".att_syntax prefix \n" // switch back to AT&T syntax

/1 output operands:
D=ttt (y) /1 output in top-of-stack goes to vy
/1 input operands:

[xx] "m" (x), "a" (n) /1 input nenory % x] for x, eax for n
/1 cl obbered registers:

"Yedx", "W%st(1)"); /1 edx and st(1l) are nodified

return vy;

}

Here, | have inserted .intel _syntax noprefix in the start of the assembly string which
allows me to use Intel syntax for the instructions. The string must end with . att_synt ax
prefix to return to the default AT&T syntax, because this syntax is used in the subsequent
code generated by the compiler. The instruction that loads the memory operand x must use
AT&T syntax because the operand substitution mechanism uses AT&T syntax for the
operand substituted for % xx] . The instruction f1dl % xx] must therefore be written in
AT&T syntax. We can still use AT&T-style local labels. The lists of output operands, input
operands and clobbered registers are the same as in example 6.1e.

7 Using an assembler
There are certain limitations on what you can do with intrinsic functions and inline assembly.

These limitations can be overcome by using an assembler. The principle is to write one or
more assembly files containing the most critical functions of a program and writing the less
critical parts in C++. The different modules are then linked together into an executable file.
The advantages of using an assembler are:

¢ There are almost no limitations on what you can do.

* You have complete control of all details of the final executable code.

« All aspects of the code can be optimized, including function prolog and epilog,
parameter transfer methods, register usage, data alignment, etc.

» ltis possible to make functions with multiple entries.

¢ |tis possible to make code that is compatible with multiple compilers and multiple
operating systems (see page 51).

44

¢ MASM and some other assemblers have a powerful macro language which opens
up possibilities that are absent in most compiled high-level languages (see page
109).

The disadvantages of using an assembler are:
» Assembly language is difficult to learn. There are many instructions to remember.
¢ Coding in assembly takes more time than coding in a high level language.
* The assembly language syntax is not fully standardized.

« Assembly code tends to become poorly structured and spaghetti-like. It takes a lot of
discipline to make assembly code well structured and readable for others.

« Assembly code is not portable between different microprocessor architectures.

» The programmer must know all details of the calling conventions and obey these
conventions in the code.

« The assembler provides very little syntax checking. Many programming errors are
not detected by the assembler.

¢ There are many things that you can do wrong in assembly code and the errors can
have serious consequences.

* You may inadvertently mix VEX and non-VEX vector instructions. This incurs a large
penalty.

» Errors in assembly code can be difficult to trace. For example, the error of not saving
a register can cause a completely different part of the program to malfunction.

» Assembly language is not suitable for making a complete program. Most of the
program has to be made in a different programming language.

The best way to start if you want to make assembly code is to first make the entire program
in C or C++. Optimize the program with the use of the methods described in manual 1:
"Optimizing software in C++". If any part of the program needs further optimization then
isolate this part in a separate module. Then translate the critical module from C++ to
assembly. There is no need to do this translation manually. Most C++ compilers can
produce assembly code. Turn on all relevant optimization options in the compiler when
translating the C++ code to assembly. The assembly code thus produced by the compiler is
a good starting point for further optimization. The compiler-generated assembly code is sure
to have the calling conventions right. (The output produced by 64-bit compilers for Windows
is not yet fully compatible with any assembler).

Inspect the assembly code produced by the compiler to see if there are any possibilities for
further optimization. Sometimes compilers are very smart and produce code that is better
optimized than what an average assembly programmer can do. In other cases, compilers
are incredibly stupid and do things in very awkward and inefficient ways. It is in the latter
case that it is justified to spend time on assembly coding.

Most IDE's (Integrated Development Environments) provide a way of including assembly
modules in a C++ project. For example in Microsoft Visual Studio, you can define a "custom
build step" for an assembly source file. The specification for the custom build step may, for
example, look like this. Command line: m /¢ /Cx /Zi [/coff $(InputNane).asm

45

Outputs: $(| nput Nane) . obj . Alternatively, you may use a makefile (see page 50) or a
batch file.

The C++ files that call the functions in the assembly module should include a header file
(*. h) containing function prototypes for the assembly functions. It is recommended to add
extern "C' to the function prototypes to remove the compiler-specific name mangling
codes from the function names.

Examples of assembly functions for different platforms are provided in paragraph 4.5, page
31ff.

7.1 Static link libraries

It is convenient to collect assembled code from multiple assembly files into a function
library. The advantages of organizing assembly modules into function libraries are:

e The library can contain many functions and modules. The linker will automatically
pick the modules that are needed in a particular project and leave out the rest so
that no superfluous code is added to the project.

e Afunction library is easy and convenient to include in a C++ project. All C++
compilers and IDE's support function libraries.

e Afunction library is reusable. The extra time spent on coding and testing a function
in assembly language is better justified if the code can be reused in different
projects.

e Making as a reusable function library forces you to make well tested and well
documented code with a well defined functionality and a well defined interface to the
calling program.

« Areusable function library with a general functionality is easier to maintain and verify
than an application-specific assembly code with a less well-defined responsibility.

e Afunction library can be used by other programmers who have no knowledge of
assembly language.

A static link function library for Windows is built by using the library manager (e.g. | i b. exe)
to combine one or more *. obj filesintoa*. | i b file.

A static link function library for Linux is built by using the archive manager (ar) to combine
one or more *. o files into an *. a file.

A function library must be supplemented by a header file (* . h) containing function
prototypes for the functions in the library. This header file is included in the C++ files that
call the library functions (e.g. #i ncl ude "nylibrary. h").

It is convenient to use a makefile (see page 50) for managing the commands necessary for
building and updating a function library.

7.2 Dynamic link libraries

The difference between static linking and dynamic linking is that the static link library is
linked into the executable program file so that the executable file contains a copy of the
necessary parts of the library. A dynamic link library (*. dl | in Windows, *. so in Linux) is
distributed as a separate file which is loaded at runtime by the executable file.

46

The advantages of dynamic link libraries are:

* Only one instance of the dynamic link library is loaded into memory when multiple
programs running simultaneously use the same library.

» The dynamic link library can be updated without modifying the executable file.

e A dynamic link library can be called from most programming languages, such as
Pascal, C#, Visual Basic (Calling from Java is possible but difficult).

The disadvantages of dynamic link libraries are:
* The whole library is loaded into memory even when only a small part of it is needed.

e Loading a dynamic link library takes extra time when the executable program file is
loaded.

» Calling a function in a dynamic link library is less efficient than a static library
because of extra call overhead and because of less efficient code cache use.

* The dynamic link library must be distributed together with the executable file.

e Multiple programs installed on the same computer must use the same version of a
dynamic link library. This can cause many compatibility problems.

A DLL for Windows is made with the Microsoft linker (I i nk. exe). The linker must be
supplied one or more . obj or. | i b files containing the necessary library functions and a
Dl | Ent ry function, which just returns 1. A module definition file (*. def) is also needed.
Note that DLL functions in 32-bit Windows use the __st dcal | calling convention, while
static link library functions use the __cdecl calling convention by default. An example
source code can be found in www.agner.org/random/randoma.zip. Further instructions can
be found in the Microsoft compiler documentation and in Iczelion's tutorials at
win32asm.cjb.net.

| have no experience in making dynamic link libraries (shared objects) for Linux.

7.3 Libraries in source code form

A problem with subroutine libraries in binary form is that the compiler cannot optimize the
function call. This problem can be solved by supplying the library functions as C++ source
code.

If the library functions are supplied as C++ source code then the compiler can optimize
away the function calling overhead by inlining the function. It can optimize register allocation
across the function. It can do constant propagation. It can move invariant code when the
function is called inside a loop, etc.

The compiler can only do these optimizations with C++ source code, not with assembly
code. The code may contain inline assembly or intrinsic function calls. The compiler can do
further optimizations if the code uses intrinsic function calls, but not if it uses inline
assembly. Note that different compilers will not optimize the code equally well.

If the compiler uses whole program optimization then the library functions can simply be
supplied as a C++ source file. If not, then the library code must be included with #i ncl ude
statements in order to enable optimization across the function calls. A function defined in an

47

http://www.agner.org/random/randoma.zip
http://win32asm.cjb.net/

included file should be declared st at i ¢ and/or i nl i ne in order to avoid clashes between
multiple instances of the function.

Some compilers with whole program optimization features can produce half-compiled object
files that allow further optimization at the link stage. Unfortunately, the format of such files is
not standardized - not even between different versions of the same compiler. It is possible
that future compiler technology will allow a standardized format for half-compiled code. This
format should, as a minimum, specify which registers are used for parameter transfer and
which registers are modified by each function. It should preferably also allow register
allocation at link time, constant propagation, common subexpression elimination across
functions, and invariant code motion.

As long as such facilities are not available, we may consider using the alternative strategy of
putting the entire innermost loop into an optimized library function rather than calling the
library function from inside a C++ loop. This solution is used in Intel's Math Kernel Library
(www.intel.com). If, for example, you need to calculate a thousand logarithms then you can
supply an array of thousand arguments to a vector logarithm function in the library and
receive an array of thousand results back from the library. This has the disadvantage that
intermediate results have to be stored in arrays rather than transferred in registers.

7.4 Making classes in assembly

Classes are coded as structures in assembly and member functions are coded as functions
that receive a pointer to the class/structure as a parameter.

It is not possible to apply the extern "C' declaration to a member function in C++
because extern "C' refers to the calling conventions of the C language which doesn't
have classes and member functions. The most logical solution is to use the mangled
function name. Returning to example 6.2a and b page 39, we can write the member function
i nt MyList::Sun() with a mangled name as follows:

; Exanple 7.1a (Exanple 6.2b translated to stand al one assenbly)
; Menber function, 32-bit Wndows, M crosoft conpiler

Define structure corresponding to class MyList:
M/List STRUC
length_ DD ? ; length is a reserved nanme. Use | ength_
buf f er DD 100 DUP (?) ; int buffer[100];
M/List ENDS

int MyList::Sum()
; Mangl ed function nane conpatible with Mcrosoft conmpiler (32 bit):
?2Sum@y/Li st QERQAEHXZ PROC near
M crosoft conpiler puts "this' in ECX
assune ecx: ptr MyLi st ; ecx points to structure MLi st
Xor eax, eax ; sum= 0

xor edx, edx ; Loop index i =0
cnp [ecx].length_, O ; this->length
je L9 ; Skip if length =0
L1: add eax, [ecx].buffer[edx*4] ; sum += buffer[i]
add edx, 1 N
cnp edx, [ecx].length_ ; while (i < length)
jb L1 ; Loop
L9: ret ; Return value is in eax
?Sum@i/Li st @IAEHXZ ENDP ; End of int MList::Sum)
assune ecx: nothing ; ecx no longer points to anything

The mangled function name ?Sum@y Li st @ADAEHXZ is compiler specific. Other compilers
may have other name-mangling codes. Furthermore, other compilers may put 't hi s' on the
stack rather than in a register. These incompatibilities can be solved by using afri end

48

http://www.intel.com/

function rather than a member function. This solves the problem that a member function
cannot be declared extern "C'. The declaration in the C++ header file must then be
changed to the following:

/1 Example 7.1b. Menber function changed to friend function

/1 An inconplete class declaration is needed here:
cl ass MyLi st;

/1 Function prototype for friend function with 'this' as paraneter:
extern "C" int MyList_Sum(MList * ThisP);

/] Class declaration
class MyList {

pr ot ect ed:

int |ength; /| Data nmenbers:
int buffer[100];

public:

MyList(); /1 Constructor

void Attltem(int itenm); /1 Add itemto |ist

/1 NMake MyList_Suma friend:
friend int MyList_Sum MyList * ThisP);

/1 Translate Sumto MyList_Sum by inline call
int Sum() {return MyList_Sum(this);}
i

The prototype for the friend function must come before the class declaration because some
compilers do not allow ext ern " C" inside the class declaration. An incomplete class
declaration is needed because the friend function needs a pointer to the class.

The above declarations will make the compiler replace any call to MyLi st : : Sumby a call to
MyLi st _Sum because the latter function is inlined into the former. The assembly
implementation of MyLi st _Sum does not need a mangled name:

; Exanple 7.1c. Friend function, 32-bit node

; Define structure corresponding to class MList:

MyLi st STRUC

length_ DD ? ; length is a reserved nanme. Use | ength_
buf f er DD 100 DUP (?) ; int buffer[100];

M/List ENDS

; extern "C' friend int MyList_Sum()
_MyLi st _Sum PRCC near
; Parameter ThisP is on stack

nov ecx, [esp+4] ; ThisP
assune ecx: ptr MyLi st ; ecx points to structure MLi st
Xor eax, eax ; sum= 0
xor edx, edx ; Loop index i =0
cnp [ecx].length_, O ; this->length
je L9 ; Skip if length =0
L1: add eax, [ecx].buffer[edx*4] ; sum += buffer[i]
add edx, 1 S0+
cnp edx, [ecx].length_ ; while (i < length)
jb L1 ; Loop
L9: ret ; Return value is in eax
_MyList_Sum ENDP ; End of int MList_Sum)
assume ecx: nothing ; ecx no longer points to anything

49

7.5 Thread-safe functions

A thread-safe or reentrant function is a function that works correctly when it is called
simultaneously from more than one thread. Multithreading is used for taking advantage of
computers with multiple CPU cores. It is therefore reasonable to require that a function
library intended for speed-critical applications should be thread-safe.

Functions are thread-safe when no variables are shared between threads, except for
intended communication between the threads. Constant data can be shared between
threads without problems. Variables that are stored on the stack are thread-safe because
each thread has its own stack. The problem arises only with static variables stored in the
data segment. Static variables are used when data have to be saved from one function call
to the next. It is possible to make thread-local static variables, but this is inefficient and
system-specific.

The best way to store data from one function call to the next in a thread-safe way is to let
the calling function allocate storage space for these data. The most elegant way to do this is
to encapsulate the data and the functions that need them in a class. Each thread must
create an object of the class and call the member functions on this object. The previous
paragraph shows how to make member functions in assembly.

If the thread-safe assembly function has to be called from C or another language that does
not support classes, or does so in an incompatible way, then the solution is to allocate a
storage buffer in each thread and supply a pointer to this buffer to the function.

7.6 Makefiles

A make utility is a universal tool to manage software projects. It keeps track of all the source
files, object files, library files, executable files, etc. in a software project. It does so by means
of a general set of rules based on the date/time stamps of all the files. If a source file is
newer than the corresponding object file then the object file has to be re-made. If the object
file is newer than the executable file then the executable file has to be re-made.

Any IDE (Integrated Development Environment) contains a make utility which is activated
from a graphical user interface, but in most cases it is also possible to use a command-line
version of the make utility. The command line make utility (called make or nnake) is based
on a set of rules that you can define in a so-called makefile. The advantage of using a
makefile is that it is possible to define rules for any type of files, such as source files in any
programming language, object files, library files, module definition files, resource files,
executable files, zip files, etc. The only requirement is that a tool exists for converting one
type of file to another and that this tool can be called from a command line with the file
names as parameters.

The syntax for defining rules in a makefile is almost the same for all the different make
utilities that come with different compilers for Windows and Linux.

Many IDE's also provide features for user-defined make rules for file types not known to the
IDE, but these utilities are often less general and flexible than a stand-alone make utility.

The following is an example of a makefile for making a function library nyl i brary.lib
from three assembly source files f uncl. asm func2. asm f unc3. asmand packing it
together with the corresponding header file nyl i br ary. h into a zip file myl i brary. zi p.

Exanple 7.2. nakefile for nylibrary
mylibrary.zip: nylibrary.lib nylibrary.h
wzzip $@ $?
nmylibrary.lib: funcl.obj func2.obj func3. obj
50

lib /out:$@ $**

. asm obj
m /c /Cx /coff /Fo$@ $*. asm

Theline nylibrary.zip: nylibrary.lib nylibrary.h tellsthatthe file

nyl i brary. zi pis built frommyl i brary. i bandnylibrary. h, and that it must be re-
built if any of these has been modified later than the zip file. The next line, which must be
indented, specifies the command needed for building the target file nyl i brary. zi p from
its dependents nyl i brary. liband nylibrary. h. (wzzi p is a command line version of
WinZip. Any other command line zip utility may be used). The next two lines tell how to build
the library file myl i brary. | i b from the three object files. The line . asm obj is a generic
rule. It tells that any file with extension . obj can be built from a file with the same name and
extension . asmby using the rule in the following indented line.

The build rules can use the following macros for specifying file names:

$@ = Current target's full name

$< = Full name of dependent file

$* = Current target's base name without extension

$** = All dependents of the current target, separated by spaces (nmake)

$+ = All dependents of the current target, separated by spaces (Gnu make)
$? = All dependents with a later timestamp than the current target

The make utility is activated with the command
nmake / Frakefile or
make -f makefile.

See the manual for the particular make utility for details.

8 Making function libraries compatible with multiple

compilers and platforms

There are a number of compatibility problems to take care of if you want to make a function
library that is compatible with multiple compilers, multiple programming languages, and
multiple operating systems. The most important compatibility problems have to do with:

1. Name mangling

2. Calling conventions

3. Object file formats
The easiest solution to these portability problems is to make the code in a high level
language such as C++ and make any necessary low-level constructs with the use of
intrinsic functions or inline assembly. The code can then be compiled with different
compilers for the different platforms. Note that not all C++ compilers support intrinsic
functions or inline assembly and that the syntax may differ.
If assembly language programming is necessary or desired then there are various methods

for overcoming the compatibility problems between different x86 platforms. These methods
are discussed in the following paragraphs.

51

8.1 Supporting multiple name mangling schemes

The easiest way to deal with the problems of compiler-specific name mangling schemes is
to turn off name mangling with the extern "C' directive, as explained on page 30.

The extern "C' directive cannot be used for class member functions, overloaded
functions and operators. This problem can be used by making an inline function with a
mangled name to call an assembly function with an unmangled name:

/1 Exanple 8.1. Avoid nane mangling of overloaded functions in C++
/1 Prototypes for unmangl ed assenbly functions:

extern "C'" doubl e power _d (double x, double n);

extern "C' double power i (double x, int n);

/1 Wap these into overloaded functions:
inline double power (double x, double n) {return power_d(x, n);
inline double power (double x, int n) {return power i(x, n);

The compiler will simply replace a call to the mangled function with a call to the appropriate
unmangled assembly function without any extra code. The same method can be used for
class member functions, as explained on page 49.

However, in some cases it is desired to preserve the name mangling. Either because it
makes the C++ code simpler, or because the mangled names contain information about
calling conventions and other compatibility issues.

An assembly function can be made compatible with multiple name mangling schemes
simply by giving it multiple public names. Returning to example 4.1c page 31, we can add
mangled names for multiple compilers in the following way:

Example 8.2. (Exanple 4.1c rewitten)
Function with multiple nangl ed nanes (32-bit node)

; doubl e sinxpnx (double x, int n) {return sin(x) + n*x;}

ALl GN 4
_sinxpnx PROC NEAR ; extern "C' nanme

; Make public nanes for each name mangling schene:
?si nXxpnx @AYANNH@ LABEL NEAR ; M crosoft conpiler

@i nxpnx$qdi LABEL NEAR ; Borland conpiler
_Z7si nxpnxdi LABEL NEAR ; Gnu conpiler for Linux
__Z7si nxpnxdi LABEL NEAR ; Gnhu conpiler for Wndows and Mac OS
PUBLI C ?si nxpnx @&YANNH@Z, @i nxpnx$qdi, _Z7si nxpnxdi, __Z7si nxpnxd
parameter x = [ESP+4]
paranmeter n = [ESP+12]

; return value = ST(0)

fild dword ptr [esp+12] ; n

fld gword ptr [esp+4] ; X

frul st(1), st(0) ;o N*x

fsin 7 sin(x)

f add ;o sin(x) + n*x

ret ; return value is in st(0)

_sinxpnx ENDP

Example 8.2 works with most compilers in both 32-bit Windows and 32-bit Linux because
the calling conventions are the same. A function can have multiple public names and the
linker will simply search for a name that matches the call from the C++ file. But a function
call cannot have more than one external name.

52

The syntax for name mangling for different compilers is described in manual 5: "Calling
conventions for different C++ compilers and operating systems". Applying this syntax
manually is a difficult job. It is much easier and safer to generate each mangled name by
compiling the function in C++ with the appropriate compiler. Command line versions of most
compilers are available for free or as trial versions.

The Intel, Digital Mars and Codeplay compilers for Windows are compatible with the
Microsoft name mangling scheme. The Intel compiler for Linux is compatible with the Gnu
name mangling scheme. Gnu compilers version 2.x and earlier have a different name
mangling scheme which | have not included in example 8.2. Mangled names for the
Watcom compiler contain special characters which are only allowed by the Watcom
assembiler.

8.2 Supporting multiple calling conventions in 32 bit mode

Member functions in 32-bit Windows do not always have the same calling convention. The
Microsoft-compatible compilers use the __t hi scal | convention with 't hi s in register ecx,
while Borland and Gnu compilers use the __cdecl convention with 't hi s' on the stack. One
solution is to use friend functions as explained on page 49. Another possibility is to make a
function with multiple entries. The following example is a rewrite of example 7.1a page 48
with two entries for the two different calling conventions:

; Exanple 8.3a (Exanple 7.1la with two entries)
; Menber function, 32-bit node

int MyList::Sum()

; Define structure corresponding to class MList:
MyLi st STRUC

length_ DD ?

buf f er DD 100 DUP (?)

MyLi st ENDS

_MyList_Sum PROC NEAR ; for extern "C' friend function

Make mangl ed nanes for conmpilers with __ cdecl convention
@WLi st @unsqv LABEL NEAR ; Borland conpiler
_ZN6MyLi st 3SunEv LABEL NEAR ; Gnu conp. for Linux
__ZN6MyLi st 3SunkEv LABEL NEAR ; Gnu conp. for Wndows and Mac OS
PUBLI C @/ Li st @unqv, _ZN6MyLi st 3Sunkv, __ ZN6MyLi st 3Sunkv

Move 'this' fromthe stack to register ecx:
nov ecx, [esp+4]

; Make mangl ed nanes for conpilers with __thiscall convention:

?Sum@y/Li st @QIAEHXZ LABEL NEAR ; Mcrosoft conpiler
PUBLI C ?Sum@W/Li st @AEAEHXZ
assune ecx: ptr MyLi st ; ecx points to structure MLi st
Xor eax, eax ; sum= 0
xor edx, edx ; Loop index i =0
cnp [ecx].length_, O ; this->length
je L9 ; Skip if length =0
L1: add eax, [ecx].buffer[edx*4] ; sum += buffer[i]
add edx, 1 IR S
cnp edx, [ecx].length_ ; while (i < length)
jb L1 ; Loop
L9: ret ; Return value is in eax
_MyLi st _Sum ENDP ; End of int MList::Sum)
assume ecx: nothing ; ecx no longer points to anything

The difference in name mangling schemes is actually an advantage here because it enables
the linker to lead the call to the entry that corresponds to the right calling convention.

53

The method becomes more complicated if the member function has more parameters.
Consider the function void MyList::Attltem(int itenm) on page 39. The thiscall
convention has the parameter 't hi s'in ecx and the parameter i t em on the stack at

[esp+4] and requires that the stack is cleaned up by the function. The __cdecl convention
has both parameters on the stack with 't hi s' at [esp+4] anditemat [esp+8] and the stack
cleaned up by the caller. A solution with two function entries requires a jump:

; Exanple 8.3b
void MyList::Attltem(int item;

_MyList_Attltem PROC NEAR ; for extern "C' friend function
; Make mangl ed nanes for conpilers with _ cdecl convention:
@AWLi st @\ttt ensqi LABEL NEAR ; Borland conpiler
_ZN6MyLi st 7AttItemEi LABEL NEAR ; Gnau conp. for Linux
__ZN6MyLi st 7AttltenEi LABEL NEAR ; Gnu conp. for Wndows and Mac OS
PUBLI C @WList@\ttltenqgi, _ZN6M/List7AttltenEi, _ ZN6MyLi st 7Att 1t enEi
Move paraneters into registers:

nov ecx, [esp+4] ; ecx = this

nmov edx, [esp+8] ; edx = item

jmp LO ; junmp into conmon section

Make mangl ed nanes for conpilers with _ thiscall convention
?Att It em@WLi st GAAEXH@Z LABEL NEAR; M crosoft conpil er
PUBLI C ?Att 1t em@WLi st @RAEXHAZ

pop eax ; Renobve return address from stack
pop edx ; Get paraneter 'itemi from stack
push eax ; Put return address back on stack
LO: ; common section where paraneters are in registers
; ecx = this, edx = item
assune ecx: ptr MyLi st ; ecx points to structure MLi st
nov eax, [ecx].length_ ; eax = this->length
cnp eax, 100 ; Check if too high
jnb L9 ; List is full. Exit
nov [ecx].buffer[eax*4],edx ; buffer[length] = item
add eax, 1 ; length++
nov [ecx].length_, eax
L9: ret
_MyList_Attltem ENDP ; End of MyList::Attltem
assume ecx: nothing ; ecx no longer points to anything

In example 8.3b, the two function entries each load all parameters into registers and then
jumps to a common section that doesn't need to read parameters from the stack. The
__thiscal |l entry must remove parameters from the stack before the common section.

Another compatibility problem occurs when we want to have a static and a dynamic link
version of the same function library in 32-bit Windows. The static link library uses the
__cdecl convention by default, while the dynamic link library uses the __st dcal |
convention by default. The static link library is the most efficient solution for C++ programs,
but the dynamic link library is needed for several other programming languages.

One solution to this problem is to specify the __cdecl orthe __stdcal | convention for both
libraries. Another solution is to make functions with two entries.

The following example shows the function from example 8.2 with two entries for the
__cdecl and __stdcal | calling conventions. Both conventions have the parameters on the

54

stack. The difference is that the stack is cleaned up by the caller in the __cdecl convention
and by the called function in the __stdcal I convention.

; Exanple 8.4a (Exanple 8.2 with __stdcall and _ cdecl entries)
; Function with entries for _ stdcall and _ cdecl (32-bit W ndows):

ALl GN 4
; __stdcall entry:
; extern "C' double _ stdcall sinxpnx (double x, int n);
_sinxpnx@?2 PROC NEAR
; CGet all parameters into registers
fild dword ptr [esp+12] ; n
fld gword ptr [esp+4] ; X

; Renpove paraneters from stack

pop eax ; Pop return address

add esp, 12 ; remove 12 bytes of paranmeters
push eax ; Put return address back on stack
jmp LO

; __cdecl entry:
; extern "C' double _ cdecl sinxpnx (double x, int n);
_si nxpnx LABEL NEAR
PUBLI C _si nxpnx
; Get all parameters into registers
fild dword ptr [esp+12] ; n
fld gword ptr [esp+4] ; X
; Don't renove paraneters fromthe stack. This is done by caller

LO: ; Common entry with paraneters all in registers
; paraneter x = st(0)
; paraneter n = st(1)

frmul st(1l), st(0) ; N*X

fsin ;7 sin(x)

f add ;osin(x) + n*x

ret ; return value is in st(0)

_sinxpnx@?2 ENDP

The method of removing parameters from the stack in the function prolog rather than in the
epilog is admittedly rather kludgy. A more efficient solution is to use conditional assembly:

; Exanple 8.4b
; Function with versions for _ stdcall and _ cdecl (32-bit W ndows)
; Choose function prolog according to calling convention

| FDEF STDCALL_ ; I f STDCALL_ is defined

_sinxpnx@2 PROC NEAR ; extern "C' _ stdcall function nane
ELSE

_si nxpnx PROC NEAR ; extern "C' _ cdecl function nane
ENDI F

; Function body common to both calling conventions:
fild dword ptr [esp+12] ; n
fld gword ptr [esp+4] ; X

frmul st(1l), st(0) ; N*X
fsin ;7 sin(x)
f add ;o osin(x) + n*x

; Choose function epilog according to calling convention

| FDEF STDCALL_ ; I f STDCALL_ is defined
ret 12 ; Clean up stack if _ stdcal
_sinxpnx@?2 ENDP ;. End of function

ELSE
ret ; Don't clean up stack if _ cdec
_sinxpnx ENDP ; End of function

55

ENDI F

This solution requires that you make two versions of the object file, one with __cdecl calling
convention for the static link library and one with __st dcal | calling convention for the
dynamic link library. The distinction is made on the command line for the assembler. The
__stdcal | version is assembled with / DSTDCALL __ on the command line to define the
macro STDCALL _, which is detected by the | FDEF conditional.

8.3 Supporting multiple calling conventions in 64 bit mode

Calling conventions are better standardized in 64-bit systems than in 32-bit systems. There
is only one calling convention for 64-bit Windows and one calling convention for 64-bit Linux
and other Unix-like systems. Unfortunately, the two sets of calling conventions are quite
different. The most important differences are:

« Function parameters are transferred in different registers in the two systems.

¢ Registers RSI, RDI, and XMv6 - XMML5 have callee-save status in 64-bit Windows but
not in 64-bit Linux.

» The caller must reserve a "shadow space" of 32 bytes on the stack for the called
function in 64-bit Windows but not in Linux.

* A'red zone" of 128 bytes below the stack pointer is available for storage in 64-bit
Linux but not in Windows.

* The Microsoft name mangling scheme is used in 64-bit Windows, the Gnu name
mangling scheme is used in 64-bit Linux.

Both systems have the stack aligned by 16 before any call, and both systems have the
stack cleaned up by the caller.

It is possible to make functions that can be used in both systems when the differences
between the two systems are taken into account. The function should save the registers that
have callee-save status in Windows or leave them untouched. The function should not use
the shadow space or the red zone. The function should reserve a shadow space for any
function it calls. The function needs two entries in order to resolve the differences in
registers used for parameter transfer if it has any integer parameters.

Let's use example 4.1 page 31 once more and make an implementation that works in both
64-bit Windows and 64-bit Linux.

; Exanple 8.5a (Exanple 4.1le/f conbined).
Support for both 64-bit Wndows and 64-bit Linux
doubl e sinxpnx (double x, int n) {return sin(x) + n * x;}

EXTRN si n: near
ALl GN 8

64-bit Linux entry:
_Z7si nxpnxdi PROC NEAR ; Gnu nane nmangling

; Linux has n in edi, Wndows has n in edx. Myve it:
nov edx, ed

; 64-bit Wndows entry:
?si nxpnx @@YANNH@ LABEL NEAR ; M crosoft nane nangling
PUBLI C ?si nxpnx @aYANNH@Z

paranmeter x = xnm0

56

; paraneter n = edx
return value = xmmD

push r bx ; rbx nmust be saved

sub rsp, 48 ; space for x, shadow space f. sin, align

novapd [rsp+32], xmmD ; save x across call to sin

nov ebx, edx ; save n across call to sin

cal | sin ; xmD = si n(xnmmD)

cvtsi 2sd xnml, ebx ; convert n to double

mul sd xpml, [rsp+32] ; n * X

addsd xm©O, xmml ;osin(x) +n* X

add rsp, 48 ; restore stack pointer

pop r bx ; restore rbx

ret ; return value is in xmO
_Z7si nxpnxdi ENDP ; End of function

We are not using ext ern " C' declaration here because we are relying on the different
name mangling schemes for distinguishing between Windows and Linux. The two entries
are used for resolving the differences in parameter transfer. If the function declaration had n
before x, i.e. doubl e sinxpnx (int n, double x);,thenthe Windows version would
have x in XMML and n in ecx, while the Linux version would still have x in XMMVD and n in EDI .

The function is storing x on the stack across the call to si n because there are no XMM
registers with callee-save status in 64-bit Linux. The function reserves 32 bytes of shadow
space for the call to si n even though this is not needed in Linux.

8.4 Supporting different object file formats
Another compatibility problem stems from differences in the formats of object files.

Borland, Digital Mars and 16-bit Microsoft compilers use the OMF format for object files.
Microsoft, Intel and Gnu compilers for 32-bit Windows use the COFF format, also called
PE32. Gnu and Intel compilers under 32-bit Linux prefer the ELF32 format. Gnu and Intel
compilers for Mac OS X use the 32- and 64-bit Mach-O format. The 32-bit Codeplay
compiler supports both the OMF, PE32 and ELF32 formats. All compilers for 64-bit
Windows use the COFF/PE32+ format, while compilers for 64-bit Linux use the ELF64
format.

The MASM assembler can produce both OMF, COFF/PE32 and COFF/PE32+ format object
files, but not ELF format. The NASM assembler can produce OMF, COFF/PE32 and ELF32
formats. The YASM assembler can produce OMF, COFF/PE32, ELF32/64, COFF/PE32+
and MachO32/64 formats. The Gnu assembler (Gas) can produce ELF32/64 and
MachO32/64 formats.

It is possible to do cross-platform development if you have an assembler that supports all
the object file formats you need or a suitable object file conversion utility. This is useful for
making function libraries that work on multiple platforms. An object file converter and cross-
platform library manager named objconv is available from www.agner.org/optimize.

The objconv utility can change function names in the object file as well as converting to a
different object file format. This eliminates the need for name mangling. Repeating example
8.5 without name mangling:

; Exanpl e 8. 5b.
; Support for both 64-bit Wndows and 64-bit Unix systens.
doubl e sinxpnx (double x, int n) {return sin(x) + n * x;}

EXTRN si n: near
ALl GN 8

57

http://www.agner.org/optimize

64-bit Linux entry:
Uni x_si nxpnx PROC NEAR ; Linux, BSD, Mac entry

: Unix has nin edi, Wndows has n in edx. Mve it:
nov edx, ed

64-bit Wndows entry:
W n_si nxpnx LABEL NEAR ; Mcrosoft entry
PUBLI C W n_si nxpnx

paranmeter x = xnmm0

paranmeter n = edx

return value = xnmD

push r bx ; rbx nmust be saved

sub rsp, 48 ; space for x, shadow space f. sin, align

novapd [rsp+32], xmmD ; save x across call to sin

nov ebx, edx ; save n across call to sin

call sin ;Xm0 = si n(xnm0)

cvtsi 2sd xmil, ebx ; convert n to double

nmul sd xmmil, [rsp+32] ; n * X

addsd Xm0, xmml ;osin(x) + n* x

add rsp, 48 ; restore stack pointer

pop r bx ; restore rbx

ret ; return value is in xmD
Uni x_si nxpnx ENDP ; End of function

This function can now be assembled and converted to multiple file formats with the following
commands:

m 64 /c sinxpnx.asm

obj conv -cof64 -np:Wn_: Si nxpnx. obj si nxpnx_w n. obj
objconv -elf64 -np:Unix_: sinxpnx.obj sinxpnx_|linux.o
obj conv -nmac64 -np:Uni x_: _ sinxpnx.obj sinxpnx_mac.o

The first line assembles the code using the Microsoft 64-bit assembler m 64 and produces
a COFF object file.

The second line replaces "W n_" with nothing in the beginning of function names in the
object file. The result is a COFF object file for 64-bit Windows where the Windows entry for
our function is available as extern "C' doubl e si nxpnx(double x, int n).The name
Uni x_si nxpnx for the Unix entry is still unchanged in the object file, but is not used.

The third line converts the file to ELF format for 64-bit Linux and BSD, and replaces "Uni x_
with nothing in the beginning of function names in the object file. This makes the Unix entry
for the function available as si nxpnx, while the unused Windows entry is W n_si nxpnx.
The fourth line does the same for the MachO file format, and puts an underscore prefix on
the function name, as required by Mac compilers.

Objconv can also build and convert static library files (*. | i b, *. a). This makes it possible
to build a multi-platform function library on a single source platform.

An example of using this method is the multi-platform function library asm i b. zi p available
from www.agner.org/optimize/. asm i b. zi p includes a makefile (see page 50) that makes
multiple versions of the same library by using the object file converter objconv.

More details about object file formats can be found in the book "Linkers and Loaders" by J.
R. Levine (Morgan Kaufmann Publ. 2000).

8.5 Supporting other high level languages

If you are using other high-level languages than C++, and the compiler manual has no

information on how to link with assembly, then see if the manual has any information on
58

http://www.agner.org/optimize/

how to link with C or C++ modules. You can probably find out how to link with assembly
from this information.

In general, it is preferred to use simple functions without name mangling, compatible with
the extern "C' and __cdecl or __stdcal | conventions in C++. This will work with most
compiled languages. Arrays and strings are usually implemented differently in different
languages.

Many modern programming languages such as C# and Visual Basic.NET cannot link to
static link libraries. You have to make a dynamic link library instead. Delphi Pascal may
have problems linking to object files - it is easier to use a DLL.

Calling assembly code from Java is quite complicated. You have to compile the code to a
DLL or shared object, and use the Java Native Interface (JNI) or Java Native Access (JNA).

9 Optimizing for speed

9.1 Identify the most critical parts of your code

Optimizing software is not just a question of fiddling with the right assembly instructions.
Many modern applications use much more time on loading modules, resource files,
databases, interface frameworks, etc. than on actually doing the calculations the program is
made for. Optimizing the calculation time does not help when the program spends 99.9% of
its time on something other than calculation. It is important to find out where the biggest
time consumers are before you start to optimize anything. Sometimes the solution can be to
change from C# to C++, to use a different user interface framework, to organize file input
and output differently, to cache network data, to avoid dynamic memory allocation, etc.,
rather than using assembly language. See manual 1: "Optimizing software in C++" for
further discussion.

The use of assembly code for optimizing software is relevant only for highly CPU-intensive
programs such as sound and image processing, encryption, sorting, data compression and
complicated mathematical calculations.

In CPU-intensive software programs, you will often find that more than 99% of the CPU time
is used in the innermost loop. Identifying the most critical part of the software is therefore
necessary if you want to improve the speed of computation. Optimizing less critical parts of
the code will not only be a waste of time, it also makes the code less clear, and less easy to
debug and maintain. Most compiler packages include a profiler that can tell you which part
of the code is most critical. If you don't have a profiler and if it is not obvious which part of
the code is most critical, then set up a number of counter variables that are incremented at
different places in the code to see which part is executed most times. Use the methods
described on page 157 for measuring how long time each part of the code takes.

It is important to study the algorithm used in the critical part of the code to see if it can be
improved. Often you can gain more speed simply by choosing the optimal algorithm than by
any other optimization method.

9.2 Out of order execution
All modern x86 processors can execute instructions out of order. Consider this example:

Exanpl e 9.1a, Qut-of-order execution
nov eax, [mentd]
i mul eax, 6
nov [nmen2], eax

59

nov ebx, [nmenB]
add ebx, 2
nmov [mend], ebx

This piece of code is doing two things that have nothing to do with each other: multiplying
[men] by 6 and adding 2 to [men8] . If it happens that [ment] is not in the cache then the
CPU has to wait many clock cycles while this operand is being fetched from main memory.
The CPU will look for something else to do in the meantime. It cannot do the second
instruction i mul eax, 6 because it depends on the output of the first instruction. But the
fourth instruction nov ebx, [mnen8] is independent of the preceding instructions so it is
possible to execute nov ebx, [nen8] and add ebx, 2 while it is waiting for [ment] . The
CPUs have many features to support efficient out-of-order execution. Most important is, of
course, the ability to detect whether an instruction depends on the output of a previous
instruction. Another important feature is register renaming. Assume that the we are using
the same register for multiplying and adding in example 9.1a because there are no more
spare registers:

; Exanple 9.1b, Qut-of-order execution with regi ster renam ng
nov eax, [nmeml]

imul eax, 6

nov [nmenR], eax

nov eax, [nenS]

add eax, 2

nov [nemd], eax

Example 9.1b will work exactly as fast as example 9.1a because the CPU is able to use
different physical registers for the same logical register eax. This works in a very elegant
way. The CPU assigns a new physical register to hold the value of eax every time eax is
written to. This means that the above code is changed inside the CPU to a code that uses
four different physical registers for eax. The first register is used for the value loaded from

[men] . The second register is used for the output of the i mul instruction. The third register
is used for the value loaded from [nen8] . And the fourth register is used for the output of
the add instruction. The use of different physical registers for the same logical register
enables the CPU to make the last three instructions in example 9.1b independent of the first
three instructions. The CPU must have a lot of physical registers for this mechanism to work
efficiently. The number of physical registers is different for different microprocessors, but
you can generally assume that the number is sufficient for quite a lot of instruction
reordering.

Partial reqisters

Some CPUs can keep different parts of a register separate, while other CPUs always treat a
register as a whole. If we change example 9.1b so that the second part uses 16-bit registers
then we have the problem of a false dependence:

; Exanple 9.1c, Fal se dependence of partial register
nov eax, [nmeml] ; 32 bit nmenory operand

i mul eax, 6

nmov [nmenR], eax

nov ax, [menB] ; 16 bit menory operand

add ax, 2

nov [memd], ax

Here the instruction nov ax, [men8] changes only the lower 16 bits of register eax, while
the upper 16 bits retain the value they got from the i mul instruction. Some CPUs from both
Intel, AMD and VIA are unable to rename a partial register. The consequence is that the nmov
ax, [menB] instruction has to wait for the i nul instruction to finish because it needs to
combine the 16 lower bits from [menB8] with the 16 upper bits from the i mul instruction.

60

Other CPUs are able to split the register into parts in order to avoid the false dependence,
but this has another disadvantage in case the two parts have to be joined together again.
Assume, for example, that the code in example 9.1c is followed by PUSH EAX. On some
processors, this instruction has to wait for the two parts of EAX to retire in order to join them
together, at the cost of 5-6 clock cycles. Other processors will generate an extra pop for
joining the two parts of the register together.

These problems are avoided by replacing nov ax, [nen8] with novzx eax, [nen8] . This
resets the high bits of eax and breaks the dependence on any previous value of eax. In 64-
bit mode, it is sufficient to write to the 32-bit register because this always resets the upper
part of a 64-bit register. Thus, novzx eax, [nen8] and novzx rax, [menB8] are doing
exactly the same thing. The 32-bit version of the instruction is one byte shorter than the 64-
bit version. Any use of the high 8-bit registers AH, BH, CH, DH should be avoided because it
can cause false dependences and less efficient code.

The flags register can cause similar problems for instructions that modify some of the flag
bits and leave other bits unchanged. For example, the | NC and DEC instructions leave the
carry flag unchanged but modifies the zero and sign flags.

Micro-operations

Another important feature is the splitting of instructions into micro-operations (abbreviated
pops or uops). The following example shows the advantage of this:

Exanple 9.2, Splitting instructions into uops
push eax
call SomeFunction

The push eax instruction does two things. It subtracts 4 from the stack pointer and stores
eax to the address pointed to by the stack pointer. Assume now that eax is the result of a
long and time-consuming calculation. This delays the push instruction. The cal | instruction
depends on the value of the stack pointer which is modified by the push instruction. If
instructions were not split into pops then the cal | instruction would have to wait until the
push instruction was finished. But the CPU splits the push eax instruction into sub esp, 4
followed by nov [esp], eax. The sub esp, 4 micro-operation can be executed before eax
is ready, so the cal | instruction will wait only for sub esp, 4, not for nov [esp], eax.

Execution units

Out-of-order execution becomes even more efficient when the CPU can do more than one
thing at the same time. Many CPUs can do two, three or four things at the same time if the
things to do are independent of each other and do not use the same execution units in the
CPU. Most CPUs have at least two integer ALU's (Arithmetic Logic Units) so that they can
do two or more integer additions per clock cycle. There is usually one floating point add unit
and one floating point multiplication unit so that it is possible to do a floating point addition
and a multiplication at the same time. There may be one memory read unit and one memory
write unit so that it is possible to read and write to memory at the same time. The maximum
average number of pops per clock cycle is three or four on many processors so that it is
possible, for example, to do an integer operation, a floating point operation, and a memory
operation in the same clock cycle. The maximum number of arithmetic operations (i.e.
anything else than memory read or write) is limited to two or three pops per clock cycle,
depending on the CPU.

Pipelined instructions

Floating point operations typically take more than one clock cycle, but they are usually
pipelined so that e.g. a new floating point addition can start before the previous addition is
finished. MMX and XMM instructions use the floating point execution units even for integer
instructions on many CPUs. The details about which instructions can be executed

61

simultaneously or pipelined and how many clock cycles each instruction takes are CPU
specific. The details for each type of CPU are explained manual 3: "The microarchitecture of
Intel, AMD and VIA CPUs" and manual 4: "Instruction tables".

Summary
The most important things you have to be aware of in order to take maximum advantage of
out-or-order execution are:

» At least the following registers can be renamed: all general purpose registers, the
stack pointer, the flags register, floating point registers, MMX, XMM and YMM
registers. Some CPUs can also rename segment registers and the floating point
control word.

« Prevent false dependences by writing to a full register rather than a partial register.

e The I NC and DEC instructions are inefficient on some CPUs because they write to
only part of the flags register (excluding the carry flag). Use ADD or SUB instead to
avoid false dependences or inefficient splitting of the flags register.

« A chain of instructions where each instruction depends on the previous one cannot
execute out of order. Avoid long dependency chains. (See page 64).

* Memory operands cannot be renamed.

« A memory read can execute before a preceding memory write to a different address.
Any pointer or index registers should be calculated as early as possible so that the
CPU can verify that the addresses of memory operands are different.

* A memory write cannot execute before a preceding write, but the write buffers can
hold a number of pending writes, typically four or more.

« A memory read can execute before another preceding read on Intel processors, but
not on AMD processors.

« The CPU can do more things simultaneously if the code contains a good mixture of
instructions from different categories, such as: simple integer instructions, floating
point addition, multiplication, memory read, memory write.

9.3 Instruction fetch, decoding and retirement

Instruction fetching can be a bottleneck. Many processors cannot fetch more than 16 bytes
of instruction code per clock cycle. It may be necessary to make instructions as short as
possible if this limit turns out to be critical. One way of making instructions shorter is to
replace memory operands by pointers (see chapter 10 page 72). The address of memory
operands can possibly be loaded into pointer registers outside of a loop if instruction
fetching is a bottleneck. Large constants can likewise be loaded into registers.

Instruction fetching is delayed by jumps on most processors. It is important to minimize the
number of jumps in critical code. Branches that are not taken and correctly predicted do not
delay instruction fetching. It is therefore advantageous to organize if-else branches so that
the branch that is followed most commonly is the one where the conditional jump is not
taken.

Most processors fetch instructions in aligned 16-byte or 32-byte blocks. It can be
advantageous to align critical loop entries and subroutine entries by 16 in order to minimize
the number of 16-byte boundaries in the code. Alternatively, make sure that there is no 16-
byte boundary in the first few instructions after a critical loop entry or subroutine entry.

62

Instruction decoding is often a bottleneck. The organization of instructions that gives the
optimal decoding is processor-specific. Intel PM processors require a 4-1-1 decode pattern.
This means that instructions which generate 2, 3 or 4 pops should be interspersed by two
single-pop instructions. On Core2 processors the optimal decode pattern is 4-1-1-1. On
AMD processors it is preferred to avoid instructions that generate more than 2 pops.

Instructions with multiple prefixes can slow down decoding. The maximum number of
prefixes that an instruction can have without slowing down decoding is 1 on 32-bit Intel
processors, 2 on Intel P4E processors, 3 on AMD processors, and unlimited on Core2.
Avoid address size prefixes. Avoid operand size prefixes on instructions with an immediate
operand. For example, it is preferred to replace MOV AX, 2 by MOV EAX, 2.

Decoding is rarely a bottleneck on processors with a trace cache, but there are specific
requirements for optimal use of the trace cache.

Most Intel processors have a problem called register read stalls. This occurs if the code has
several registers which are often read from but seldom written to.

Instruction retirement can be a bottleneck on most processors. AMD processors and Intel
PM and P4 processors can retire no more than 3 pops per clock cycle. Core2 processors
can retire 4 pops per clock cycle. No more than one taken jump can retire per clock cycle.

All these details are processor-specific. See manual 3: "The microarchitecture of Intel, AMD
and VIA CPUs" for details.

9.4 Instruction latency and throughput

The latency of an instruction is the number of clock cycles it takes from the time the
instruction starts to execute till the result is ready. The time it takes to execute a
dependency chain is the sum of the latencies of all instructions in the chain.

The throughput of an instruction is the maximum number of instructions of the same kind
that can be executed per clock cycle if the instructions are independent. | prefer to list the
reciprocal throughputs because this makes it easier to compare latency and throughput.
The reciprocal throughput is the average time it takes from the time an instruction starts to
execute till another independent instruction of the same type can start to execute, or the
number of clock cycles per instruction in a series of independent instructions of the same
kind. For example, floating point addition on a Core 2 processor has a latency of 3 clock
cycles and a reciprocal throughput of 1 clock per instruction. This means that the processor
uses 3 clock cycles per addition if each addition depends on the result of the preceding
addition, but only 1 clock cycle per addition if the additions are independent.

Manual 4: "Instruction tables" contains detailed lists of latencies and throughputs for almost
all instructions on many different microprocessors from Intel, AMD and VIA.

The following list shows some typical values.

Instruction Typical latency Typical reciprocal
throughput
Integer move 1 0.33-0.5
Integer addition 1 0.33-0.5
Integer Boolean 1 0.33-1
Integer shift 1 0.33-1
Integer multiplication 3-10 1-2
Integer division 20-80 20-40
Floating point addition 3-6 1

63

Floating point multiplication 4-8 1-2
Floating point division 20-45 20-45
Integer vector addition (XMM) 1-2 0.5-2
Integer vector multiplication (XMM) 3-7 1-2
Floating point vector addition (XMM) 3-5 1-2
Floating point vector multiplication (XMM) 4-7 1-4
Floating point vector division (XMM) 20-60 20-60
Memory read (cached) 3-4 0.5-1
Memory write (cached) 3-4 1
Jump or call 0 1-2
Table 9.1. Typical instruction latencies and throughputs

9.5 Break dependency chains

In order to take advantage of out-of-order execution, you have to avoid long dependency
chains. Consider the following C++ example, which calculates the sum of 100 numbers:

/1 Exanple 9.3a, Loop-carried dependency chain
double list[100], sum= O.;
for (int i =0; i < 100; i++) sum+=list[i];

This code is doing a hundred additions, and each addition depends on the result of the
preceding one. This is a loop-carried dependency chain. A loop-carried dependency chain
can be very long and completely prevent out-of-order execution for a long time. Only the
calculation of i can be done in parallel with the floating point addition.

Assuming that floating point addition has a latency of 4 and a reciprocal throughput of 1, the
optimal implementation will have four accumulators so that we always have four additions in
the pipeline of the floating point adder. In C++ this will look like:

/1 Exanple 9.3b, Miltiple accumul ators
double list[100], sunl = 0., sunm? = 0., sunB8 = 0., sumd = O.
for (int i =0; i <100; i +=4) {
sunml += list[i];
sun? += list[i+1];
sumB += list[i+2];
sumd += list[i+3];
}
suml = (suml + sun®) + (sunB + sumd);

Here we have four dependency chains running in parallel and each dependency chain is
one fourths as long as the original one. See page 64 for examples of assembly code for
loops with multiple accumulators.

It may not be possible to obtain the theoretical maximum throughput. The more parallel
dependency chains there are, the more difficult is it for the CPU to schedule and reorder the
pops optimally. It is particularly difficult if the dependency chains are branched or entangled.

Dependency chains occur not only in loops but also in linear code. Such dependency chains
can also be broken up. Forexample, y = a + b + ¢ + d can be changed to
y = (a + b) + (c + d) sothatthe two parentheses can be calculated in parallel.

Sometimes there are different possible ways of implementing the same calculation with
different latencies. For example, you may have the choice between a branch and a
conditional move. The branch has the shortest latency, but the conditional move avoids the
risk of branch misprediction (see page 66). Which implementation is optimal depends on
how predictable the branch is and how long the dependency chain is.

64

A common way of setting a register to zero is XOR EAX, EAX or SUB EAX, EAX. Some
processors recognize that these instructions are independent of the prior value of the
register. So any instruction that uses the new value of the register will not have to wait for
the value prior to the XOR or SUB instruction to be ready. These instructions are useful for
breaking an unnecessary dependence. The following list summarizes which instructions are
recognized as breaking dependence when source and destination are the same, on
different processors:

Instruction P3 and P4 PM Core?2 AMD
earlier

XOR - X - X X
SuUB - X - X X
SBB - - - - X
CwvP - - - - -
PXOR - X - X X
XORPS, XORPD - - - X X
PANDN - - - - -
PSUBX x - - - X -
PCMPx x - - - X -

Table 9.2. Instructions that break dependence when source and destination are the same

You should not break a dependence by an 8-bit or 16-bit part of a register. For example
XOR AX, AX breaks a dependence on some processors, but not all. But XOR EAX, EAX is
sufficient for breaking the dependence on RAX in 64-bit mode.

The SBB EAX, EAX is of course dependent on the carry flag, even when it does not depend
on EAX.

You may also use these instructions for breaking dependences on the flags. For example,
rotate instructions have a false dependence on the flags in Intel processors. This can be
removed in the following way:

Exanpl e 9.4, Break dependence on fl ags
ror eax, 1
sub edx, edx ; Rempove fal se dependence on the fl ags
ror ebx, 1

You cannot use CLC for breaking dependences on the carry flag.

9.6 Jumps and calls

Jumps, branches, calls and returns do not necessarily add to the execution time of a code
because they will typically be executed in parallel with something else. The number of
jumps etc. should nevertheless be kept at a minimum in critical code for the following
reasons:

» Instruction prefetching is less efficient after a jump, especially if the target is near the
end of a 16-byte block.

» The code cache becomes fragmented and less efficient when jumping around
between noncontiguous subroutines.

« Microprocessors with a trace cache are likely to store multiple instances of the same
code in the trace cache when the code contains many jumps.

65

e The branch target buffer (BTB) can store only a limited number of jump target
addresses. A BTB miss costs many clock cycles.

» Conditional jumps are predicted according to advanced branch prediction
mechanisms. Mispredictions are expensive, as explained below.

» On most processors, branches can interfere with each other in the global branch
pattern history table and the branch history register. One branch may therefore
reduce the prediction rate of other branches.

» Returns are predicted by the use of a return stack buffer, which can only hold a
limited number of return addresses, typically 8 or 16.

¢ Indirect jumps and indirect calls are poorly predicted on older processors.

All modern CPUs have an execution pipeline that contains stages for instruction prefetching,
decoding, register renaming, pop reordering and scheduling, execution, retirement, etc. The
number of stages in the pipeline range from 12 to 22, depending on the specific micro-
architecture. When a branch instruction is fed into the pipeline then the CPU doesn't know
for sure which instruction is the next one to fetch into the pipeline. It takes at least 12 more
clock cycles before the branch instruction is executed so that it is known with certainty
which way the branch goes. This uncertainty is likely to break the flow through the pipeline.
Rather than waiting 12 or more clock cycles for an answer, the CPU attempts to guess
which way the branch will go. The guess is based on the previous behavior of the branch. If
the branch has gone the same way the last several times then it is predicted that it will go
the same way this time. If the branch has alternated regularly between the two ways then it
is predicted that it will continue to alternate.

If the prediction is right then the CPU has saved a lot of time by loading the right branch into
the pipeline and started to decode and speculatively execute the instructions in the branch.
If the prediction was wrong then the mistake is discovered after several clock cycles and the
mistake has to be fixed by flushing the pipeline and discarding the results of the speculative
executions. The cost of a branch misprediction ranges from 12 to more than 50 clock
cycles, depending on the length of the pipeline and other details of the microarchitecture.
This cost is so high that very advanced algorithms have been implemented in order to refine
the branch prediction. These algorithms are explained in detail in manual 3: "The
microarchitecture of Intel, AMD and VIA CPUs".

In general, you can assume that branches are predicted correctly most of the time in these
cases:

» If the branch always goes the same way.

e If the branch follows a simple repetitive pattern and is inside a loop with few or no
other branches.

e If the branch is correlated with a preceding branch.

» If the branch is a loop with a constant, small repeat count and few or no conditional
jumps inside the loop.

The worst case is a branch that goes either way approximately 50% of the time, does not
follow any regular pattern, and is not correlated with any preceding branch. Such a branch
will be mispredicted 50% of the time. This is so costly that the branch should be replaced by
conditional moves or a table lookup if possible.

66

In general, you should try to keep the number of poorly predicted branches at a minimum
and keep the number of branches inside a loop at a minimum. It may be useful to split up or
unroll a loop if this can reduce the number of branches inside the loop.

Indirect jumps and indirect calls are often poorly predicted. Most processors will simply
predict an indirect jump or call to go the same way as it did last time. The PM and Core2
processors are able to recognize simple repetitive patterns for indirect jumps.

Returns are predicted by means of a so-called return stack buffer which is a first-in-last-out
buffer that mirrors the return addresses pushed on the stack. A return stack buffer with 16
entries can correctly predict all returns for subroutines at a nesting level up to 16. If the
subroutine nesting level is deeper than the size of the return stack buffer then the failure will
be seen at the outer nesting levels, not the presumably more critical inner nesting levels. A
return stack buffer size of 8 or 16 is therefore sufficient in most cases, except for deeply
nested recursive functions.

The return stack buffer will fail if there is a call without a matching return or a return without
a preceding call. It is therefore important to always match calls and returns. Do not jump out
of a subroutine by any other means than by a RET instruction. And do not use the RET
instruction as an indirect jump. Far calls should be matched with far returns.

Eliminating calls
It is possible to replace a call followed by a return by a jump:

Exanmple 9.5a, call/ret sequence (32-bit W ndows)
Funcl PROC NEAR

call Func2
ret
Funcl ENDP

This can be changed to:

; Exanple 9.5b, call+ret replaced by jnp
Funcl PROC NEAR

jmp Func?2
Funcl ENDP

This modification does not conflict with the return stack buffer mechanism because the call
to Func1 is matched with the return from Func2. In systems with stack alignment, it is
necessary to restore the stack pointer before the jump:

; Exanple 9.6a, call/ret sequence (64-bit Wndows or Linux)
Funcl PROC NEAR

sub rsp, 8 ; Align stack by 16
call Func2 ; This call can be elimnated
add rsp, 8
ret
Funcl ENDP

This can be changed to:

; Exanple 9.6b, call+ret replaced by jnp with stack aligned
Funcl PROC NEAR
sub rsp, 8

éad rsp, 8 ; Restore stack pointer before junp
j mp Func?2

67

Funcl ENDP

Eliminating unconditional jumps

It is often possible to eliminate a jump by copying the code that it jumps to. The code that is
copied can typically be a loop epilog or function epilog. The following example is a function
with an if-else branch inside a loop:

Exanmple 9.7a, Function with junp that can be elim nated
FuncA PROC NEAR

push ebp
nov ebp, esp
sub esp, StackSpaceNeeded
| ea edx, EndOf SoneArray
xor eax, eax
Loopl: ; Loop starts here
cnp [edx+eax*4], eax ; if-else
je El seBr anch
- First branch
jmp End_If

El seBr anch:
; Second branch

End_|f:
add eax, 1 ; Loop epil og
jnz Loopl
nov esp, ebp ; Function epil og
pop ebp
ret
FuncA ENDP

The jump to End_I f may be eliminated by duplicating the loop epilog:

; Exanple 9.7b, Loop epilog copied to elimnate junp
FuncA PROC NEAR

push ebp
nov ebp, esp
sub esp, StackSpaceNeeded
| ea edx, EndCOf SoneArray
xor eax, eax
Loopl: ; Loop starts here
cnp [edx+eax*4], eax ; if-else
je El seBranch
o ; First branch
add eax, 1 ; Loop epilog for first branch
j nz Loopl
jmp Af t er Loop

El seBr anch:
; Second branch

add eax, 1 ; Loop epilog for second branch
jnz Loopl
Af t er Loop:
nov esp, ebp ; Function epil og
pop ebp
ret
FuncA ENDP

In example 9.7b, the unconditional jump inside the loop has been eliminated by making two

copies of the loop epilog. The branch that is executed most often should come first because
the first branch is fastest. The unconditional jump to Af t er Loop can also be eliminated. This
is done by copying the function epilog:

68

; Exanple 9.7b, Function epilog copied to elinmnate junp
FuncA PROC NEAR

push ebp
nov ebp, esp
sub esp, StackSpaceNeeded
| ea edx, EndCOf SoneArray
xor eax, eax
Loopl: ; Loop starts here
cnp [edx+eax*4], eax ; if-else
je El seBranch
o ; First branch
add eax, 1 ; Loop epilog for first branch
j nz Loopl
nov esp, ebp ; Function epilog 1
pop ebp

ret

El seBr anch:
; Second branch

édd eax, 1 ; Loop epilog for second branch
jnz Loopl

nov esp, ebp ; Function epilog 2

pop ebp

ret
FuncA ENDP

The gain that is obtained by eliminating the jump to Af t er Loop is less than the gain
obtained by eliminating the jump to End_I f because it is outside the loop. But | have shown
it here to illustrate the general method of duplicating a function epilog.

Replacing conditional jumps with conditional moves

The most important jumps to eliminate are conditional jumps, especially if they are poorly
predicted. Example:

/1 Example 9.8a. C++ branch to optim ze
a=b>c?d: e

This can be implemented with either a conditional jump or a conditional move:

Exanmpl e 9.8b. Branch inplenented with conditional junp

nov eax, [b]
cnp eax, [c]
j ng L1
nov eax, [d]
j m L2
L1: nov eax, [e]
L2: nov [a], eax

; Exanple 9.8c. Branch inplenented with conditional nove

nov eax, [b]
cnp eax, [c]
nov eax, [d]
cnmovng eax, [e]
nov [a], eax

The advantage of a conditional move is that it avoids branch mispredictions. But it has the
disadvantage that it increases the length of a dependency chain, while a predicted branch
breaks the dependency chain. If the code in example 9.8c¢ is part of a dependency chain

69

then the cnov instruction adds to the length of the chain. The latency of crnov is two clock
cycles on Intel processors, and one clock cycle on AMD processors. If the same code is
implemented with a conditional jump as in example 9.8b and if the branch is predicted
correctly, then the result doesn't have to wait for b and c to be ready. It only has to wait for
either d or e, whichever is chosen. This means that the dependency chain is broken by the
predicted branch, while the implementation with a conditional move has to wait for both b, c,
d and e to be available. If d and e are complicated expressions, then both have to be
calculated when the conditional move is used, while only one of them has to be calculated if
a conditional jump is used.

As a rule of thumb, we can say that a conditional jump is faster than a conditional move if
the code is part of a dependency chain and the prediction rate is better than 75%. A
conditional jump is also preferred if we can avoid a lengthy calculation of d or e when the
other operand is chosen.

Loop-carried dependency chains are particularly sensitive to the disadvantages of
conditional moves. For example, the code in example 12.13a on page 110 works more
efficiently with a branch inside the loop than with a conditional move, even if the branch is
poorly predicted. This is because the floating point conditional move adds to the loop-
carried dependency chain and because the implementation with a conditional move has to
calculate all the power *xp values, even when they are not used.

Another example of a loop-carried dependency chain is a binary search in a sorted list. If
the items to search for are randomly distributed over the entire list then the branch
prediction rate will be close to 50% and it will be faster to use conditional moves. But if the
items are often close to each other so that the prediction rate will be better, then it is more
efficient to use conditional jumps than conditional moves because the dependency chain is
broken every time a correct branch prediction is made.

It is also possible to do conditional moves in vector registers on an element-by-element
basis. See page 113ff for details. There are special vector instructions for getting the
minimum or maximum of two numbers. It may be faster to use vector registers than integer
or floating point registers for finding minimums or maximums.

Replacing conditional jumps with conditional set instructions

If a conditional jump is used for setting a Boolean variable to 0 or 1 then it is often more
efficient to use the conditional set instruction. Example:

/1 Exanple 9.9a. Set a bool variable on sone condition
int b, c;
bool a = b > c;

Exanpl e 9.9b. Inplenentation with conditional set

nov eax, [Db]
cnp eax, [c]
setg al

nov [a], al

The conditional set instruction writes only to 8-bit registers. If a 32-bit result is needed then
set the rest of the register to zero before the compare:

Exanple 9.9c. Inplenentation with conditional set, 32 bits

nov eax, [Db]

xor ebx, ebx ; zero register before cnp to avoid changing flags
cnp eax, [c]

setg bl

nov [a], ebx

If there is no vacant register then use novzx:
70

; Exanple 9.9d. Inplenentation with conditional set, 32 bits

nov eax, [b]
cnp eax, [c]
setg a

novzx eax, a
nov [a], eax

If a value of all ones is needed for true then use neg eax.

An implementation with conditional jumps may be faster than conditional set if the prediction
rate is good and the code is part of a long dependency chain, as explained in the previous
section (page 69).

Replacing conditional jumps with bit-manipulation instructions

It is sometimes possible to obtain the same effect as a branch by ingenious manipulation of
bits and flags. The carry flag is particularly useful for bit manipulation tricks:

Exanmple 9.10, Set carry flag if eax is zero:
cnp eax, 1

Example 9.11, Set carry flag if eax is not zero:

neg eax
Example 9.12, Increment eax if carry flag is set:
adc eax, O

Example 9.13, Copy carry flag to all bits of eax:
sbb eax, eax

Exampl e 9. 14, Copy bits one by one fromcarry into a bit vector
rcl eax, 1

It is possible to calculate the absolute value of a signed integer without branching:

; Exanple 9.15, Calcul ate absol ute val ue of eax

cdq ; Copy sign bit of eax to all bits of edx
xor eax, edx ; Invert all bits if negative
sub eax, edx ; Add 1 if negative

The following example finds the minimum of two unsigned numbers: if (b > a) b = a;

; Exanple 9.16a, Find mninmmof eax and ebx (unsigned):
sub eax, ebx ; a-b

sbb edx, edx (b > a) ? OXFFFFFFFF : O

and edx, eax ; (b>a) ?a-b: 0

add ebx, edx ; Result is in ebx

Or, for signed numbers, ignoring overflow:

; Exanple 9.16b, Find mninmum of eax and ebx (signed):

sub eax, ebx : WII not work if overflow here
cdq ; = (b > a) ? OxFFFFFFFF : O

and edx, eax ; =(b>a) ?a-b: 0

add ebx, edx : Result is in ebx

The next example chooses between two numbers: if (a < 0)d = b; else d = ¢;

Exampl e 9. 17a, Choose between two nunbers
test eax, eax
nov edx, ecx

71

cnmovs edx, ebx ; = (a<0) ?b: c

Conditional moves are not very efficient on Intel processors and not available on old
processors. Alternative implementations may be faster in some cases. The following
example gives the same result as example 9.17a.

; Exanple 9.17b, Choose between two nunbers without conditional nove:
cdq ; = (a < 0) ? OXFFFFFFFF : 0

xor ebx, ecx ; N c = bits that differ between b and c

and edx, ebx (a<0) ?2(b”~rc):0

xor edx, ecx ; (a<0) ?b: c

I n ol

Example 9.17b may be faster than 9.17a on processors where conditional moves are
inefficient. Example 9.17b destroys the value of ebx.

Whether these tricks are faster than a conditional jump depends on the prediction rate, as
explained above.

10 Optimizing for size

The code cache can hold from 8 to 32 kb of code, as explained in chapter 11 page 80. If
there are problems keeping the critical parts of the code within the code cache, then you
may consider reducing the size of the code. Reducing the code size can also improve the
decoding of instructions. Loops that have no more than 64 bytes of code perform
particularly fast on the Core2 processor.

You may even want to reduce the size of the code at the cost of reduced speed if speed is
not important.

32-bit code is usually bigger than 16-bit code because addresses and data constants take 4
bytes in 32-bit code and only 2 bytes in 16-bit code. However, 16-bit code has other
penalties, especially because of segment prefixes. 64-bit code does not need more bytes
for addresses than 32-bit code because it can use 32-bit RIP-relative addresses. 64-bit
code may be slightly bigger than 32-bit code because of REX prefixes and other minor
differences, but it may as well be smaller than 32-bit code because the increased number of
registers reduces the need for memory variables.

10.1 Choosing shorter instructions

Certain instructions have short forms. PUSH and POP instructions with an integer register take
only one byte. XCHG EAX, reg32 is also a single-byte instruction and thus takes less space
than a MOV instruction, but XCHGis slower than MOV. | NC and DEC with a 32-bit register in 32-
bit mode, or a 16-bit register in 16-bit mode take only one byte. The short form of | NC and
DEC is not available in 64-bit mode.

The following instructions take one byte less when they use the accumulator than when they
use any other register: ADD, ADC, SUB, SBB, AND, OR, XOR, CVP, TEST with an immediate
operand without sign extension. This also applies to the MOV instruction with a memory
operand and no pointer register in 16 and 32 bit mode, but not in 64 bit mode. Examples:

; Exanple 10.1. Instruction sizes
add eax, 1000 is smallerthan add ebx, 1000
mov eax, [men] is smallerthan nov ebx, [men], exceptin 64 bit mode.

72

Instructions with pointers take one byte less when they have only a base pointer (except
ESP, RSP or R12) and a displacement than when they have a scaled index register, or both
base pointer and index register, or ESP, RSP or R12 as base pointer. Examples:

Exanmpl e 10.2. Instruction sizes
nmov eax, array[ebx] is smaller than nov eax, array[ebx*4]
nov eax, [ebp+12] is smaller than nov eax, [esp+12]

Instructions with BP, EBP, RBP or R13 as base pointer and no displacement and no index
take one byte more than with other registers:

Exanmpl e 10.3. Instruction sizes
mov eax, [ebx] is smallerthan nov eax, [ebp], but
mov eax, [ebx+4] is same size as nov eax, [ebp+4].

Instructions with a scaled index pointer and no base pointer must have a four bytes
displacement, even when it is O:

Exanmpl e 10.4. Instruction sizes
| ea eax, [ebx+ebx] is shorterthan |ea eax,[ebx*2].

Instructions in 64-bit mode need a REX prefix if at least one of the registers R8 - R15 or XMvB
- XMVL5 are used. Instructions that use these registers are therefore one byte longer than
instructions that use other registers, unless a REX prefix is needed anyway for other
reasons:

Exanmpl e 10.5a. Instruction sizes (64 bit node)
nov eax, [rbx] is smallerthan nov eax, [r8].

; Exanpl e 10.5b. Instruction sizes (64 bit node)
mov rax, [rbx] is same size as nov rax,[r8].

In example 10.5a, we can avoid a REX prefix by using register RBX instead of R8 as pointer.
But in example 10.5b, we need a REX prefix anyway for the 64-bit operand size, and the
instruction cannot have more than one REX prefix.

Floating point calculations can be done either with the old floating point stack registers
ST(0) -ST(7) or the new XMM registers on microprocessors with the SSE2 or later
instruction set. The former instructions are more compact than the latter, for example:

; Exanple 10.6. Floating point instruction sizes
fadd st(0), st(1) ; 2 bytes
addsd xnm0D, xmml ;4 bytes

The use of ST(0) -ST(7) may be advantageous even if it requires extra FXCH instructions.
There is no big difference in execution speed between the two types of floating point
instructions on current processors.

Processors supporting the AVX instruction set (expected available in 2010) can code XMM
instructions in two different ways, with a VEX prefix or with the old prefixes. Sometimes the
VEX version is shorter and sometimes the old version is shorter. However, there is a severe
performance penalty to mixing XMM instructions without VEX prefix with instructions using
YMM registers.

73

10.2 Using shorter constants and addresses

Many jump addresses, data addresses, and data constants can be expressed as sign-
extended 8-bit constants. This saves a lot of space. A sign-extended byte can only be used
if the value is within the interval from -128 to +127.

For jump addresses, this means that short jumps take two bytes of code, whereas jumps
beyond 127 bytes take 5 bytes if unconditional and 6 bytes if conditional.

Likewise, data addresses take less space if they can be expressed as a pointer and a
displacement between -128 and +127. The following example assumes that [ren] and
[men2] are static memory addresses in the data segment and that the distance between
them is less than 128 bytes:

Exanmpl e 10.7a, Static menory operands

nov ebx, [neml] ; 6 bytes
add ebx, [nmen?] ; 6 bytes
Reduce to:

; Exanpl e 10.7b, Replace addresses by pointer

nov eax, offset neml ; 5 bytes
nov ebx, [eax] ;2 bytes
add ebx, [eax] + (men2 - neml) ; 3 bytes

In 64-bit mode you need to replace nov eax, of fset nmenl with | ea rax, [mentd], which
is one byte longer. The advantage of using a pointer obviously increases if you can use the
same pointer many times. Storing data on the stack and using EBP or ESP as pointer will
thus make the code smaller than if you use static memory locations and absolute
addresses, provided of course that the data are within +/-127 bytes of the pointer. Using
PUSH and POP to write and read temporary integer data is even shorter.

Data constants may also take less space if they are between -128 and +127. Most
instructions with immediate operands have a short form where the operand is a sign-
extended single byte. Examples:

Exampl e 10. 8, Sign-extended operands

push 200 ; 5 bytes
push 100 ; 2 bytes, sign extended
add ebx, 128 ; 6 bytes
sub ebx, -128 ; 3 bytes, sign extended

The only instructions with an immediate operand that do not have a short form with a sign-
extended 8-bit constant are MOv, TEST, CALL and RET. You may save space, for example by
replacing TEST with AND:

; Exanple 10.9, Sign-extended operands

test ebx, 8 ; 6 bytes
test eax, 8 ; 5 bytes
and ebx, 8 ; 3 bytes
bt ebx, 3 ; 4 bytes (uses carry flag)
cnp ebx, 8 ; 3 bytes

Shorter alternatives for MOV regi ster, constant are often useful. Examples:
; Exanpl e 10.10, Loading constants into 32-bit registers

nov eax, O ; 5 bytes
sub eax, eax ; 2 bytes

74

nov eax, 1 ; 5 bytes
sub eax, eax / inc eax 3 bytes
push 1 / pop eax 3 bytes
nov eax, -1 ; 5 bytes
or eax, -1 ; 3 bytes

You may also consider reducing the size of static data. Obviously, an array can be made
smaller by using a smaller data size for the elements. For example 16-bit integers instead of
32-bit integers if the data are sure to fit into the smaller data size. The code for accessing
16-bit integers is slightly bigger than for accessing 32-bit integers, but the increase in code
size is small compared to the decrease in data size for a large array. Instructions with 16-bit
immediate data operands should be avoided in 32-bit and 64-bit mode because of inefficient
decoding.

10.3 Reusing constants

If the same address or constant is used more than once then you may load it into a register.
A MOV with a 4-byte immediate operand may sometimes be replaced by an arithmetic
instruction if the value of the register before the MOV is known. Example:

; Exanpl e 10. 1la, Loading 32-bit constants

nmov [nmenl], 200 ; 10 bytes

nmov [nenR], 201 ; 10 bytes

nov eax, 100 ;5 bytes

nov ebx, 150 ;5 bytes
Replace with:

Exanmpl e 10. 11b, Reuse constants

nov eax, 200 ;5 bytes
nmov [neml], eax ;5 bytes
i nc eax ;1 byte
nov [nenR], eax ;5 bytes
sub eax, 101 ;3 bytes
| ea ebx, [eax+50] 3 bytes

10.4 Constants in 64-bit mode

In 64-bit mode, there are three ways to move a constant into a 64-bit register: with a 64-bit
constant, with a 32-bit sign-extended constant, and with a 32-bit zero-extended constant:

Exanmpl e 10. 12, Loading constants into 64-bit registers
nmov rax, 123456789abcdefOh ; 10 bytes (64-bit constant)
nov rax, -100 ;7 bytes (32-bit sign-extended)
nov eax, 100 ;5 bytes (32-bit zero-extended)

Some assemblers use the sign-extended version rather than the shorter zero-extended
version, even when the constant is within the range that fits into a zero-extended constant.
You can force the assembler to use the zero-extended version by specifying a 32-bit
destination register. Writes to a 32-bit register are always zero-extended into the 64-bit
register.

10.5 Addresses and pointers in 64-bit mode

64-bit code should preferably use 64-bit register size for base and index in addresses, and
32-bit register size for everything else. Example:

Exampl e 10. 13, 64-bit versus 32-bit registers

75

nov eax, [rbx + 4*rcx]
inc rcx

Here, you can save one byte by changing i nc rcx to i nc ecx. This will work because the
value of the index register is certain to be less than 2%. The base pointer however, may be
bigger than 2*? in some systems so you can't replace add rbx, 4 by add ebx, 4. Never
use 32-bit registers as base or index inside the square brackets in 64-bit mode.

The rule of using 64-bit registers inside the square brackets of an indirect address and 32-
bit registers everywhere else also applies to the LEA instruction. Examples:

Exanmpl e 10.14. LEA in 64-bit node

| ea eax, [ebx + ecx] ; 4 bytes (needs address size prefix)

| ea eax, [rbx + rcx] ; 3 bytes (no prefix)

| ea rax, [ebx + ecx] ; 5 bytes (address size and REX prefix)
lea rax, [rbx + rcx] ; 4 bytes (needs REX prefix)

The form with 32-bit destination and 64-bit address is preferred unless a 64-bit result is
needed. This version takes no more time to execute than the version with 64-bit destination.
The forms with address size prefix should never be used.

An array of 64-bit pointers in a 64-bit program can be made smaller by using 32-bit pointers
relative to the image base or to some reference point. This makes the array of pointers
smaller at the cost of making the code that uses the pointers bigger since it needs to add
the image base. Whether this gives a net advantage depends on the size of the array.
Example:

; Exanpl e 10. 15a. Junp-table in 64-bit node
. data
JumpTabl e DQ Label 1, Label 2, Label 3,

. code

nov eax, [n] ;I ndex

[ea rdx, JunpTabl e ; Address of junp table
jmp gword ptr [rdx+rax*8] ; Junmp to JunpTabl e[n]

Implementation with image-relative pointers:

; Exanpl e 10. 15b. Inmage-relative junp-table in 64-bit W ndows

.data

JunpTabl e DD i nagerel (Label 1), i nmagerel (Label 2), i nagerel (Label 3), .
extrn __| nageBase: byt e

. code

nov eax, [n] ;I ndex

| ea rdx, __ | nmgeBase ; I nmage base

nov eax, [rdx+rax*4+i magerel (JunpTable)] ; Load inage rel. address
add rax, rdx ; Add i mage base to address

jmp rax ; Junp to conputed address

The Gnu compiler for Mac OS X uses the jump table itself as a reference point:

; Exanple 10.15c. Self-relative junp-table in 64-bit Mac
.data
JunmpTabl e DD Label 1- JunpTabl e, Label 2-JunpTabl e, Label 3-JunpTabl e

. code

nov eax, [n] ;I ndex

[ea rdx, JunpTabl e ; Table and reference point
nmovsxd rax, [rdx + rax*4] ; Load address relative to table
add rax, rdx ; Add table base to address

76

jmp rax ; Junp to conputed address

The assembler may not be able to make self-relative references form the data segment to
the code segment.

The shortest alternative is to use 32-bit absolute pointers. This method can be used only if
there is certainty that all addresses are less than 2%

Exanmpl e 10.15d. 32-bit absolute junp table in 64-bit Linux
Requi res that addresses < 2731

.data

JunpTabl e DD Label 1, Label 2, Label 3, .. ; 32-bit addresses
. code

nov eax, [n] ;I ndex

nov eax, JunpTabl e[rax*4] ; Load 32-bit address

jmp rax ; Junp to zero-extended address

In example 10.15d, the address of JunpTabl e is a 32-bit relocatable address which is zero-
extended or sign-extended to 64 bits. This works if the address is less than 2°'. The
addresses of Label 1, etc., are zero-extended, so this will work if the addresses are less
than 2%2. The method of example 10.15d can be used if there is certainty that the image
base plus the program size is less than 2*', which will be true in most cases for application
programs in Windows, Linux and BSD, but not in Mac OS X (see page 23).

It is even possible to replace the 64-bit or 32-bit pointers with 16-bit offsets relative to a
suitable reference point:

Exanmpl e 10.15d. 16-bit offsets to a reference point
.data
JunpTabl e DW 0, Label 2-Label 1, Label 3-Label 1

. code

nov eax, [n] ;I ndex

[ea rdx, JunpTabl e ; Address of table (RIP-relative)
novsx rax, word ptr [rdx+rax*2] ; Sign-extend 16-bit offset

| ea rdx, Labell ; Use Label 1 as reference point
add rax, rdx ; Add offset to reference point
jmp rax ; Junmp to computed address

Example 10.15d uses Label 1 as a reference point. It works only if all labels are within the
interval Label 1 + 2'°. The table contains the 16-bit offsets which are sign-extended and
added to the reference point.

The examples above show different methods for storing code pointers. The same methods
can be used for data pointers. A pointer can be stored as a 64-bit absolute address, a 32-bit
relative address, a 32-bit absolute address, or a 16-bit offset relative to a suitable reference
point. The methods that use pointers relative to the image base or a reference point are only
worth the extra code if there are many pointers. This is typically the case in large switch
statements and in linked lists.

10.6 Making instructions longer for the sake of alignment

There are situations where it can be advantageous to reverse the advice of the previous
paragraphs in order to make instructions longer. Most important is the case where a loop
entry needs to be aligned (see p. 85). Rather than inserting NOP's to align the loop entry
label you may make the preceding instructions longer than their minimum lengths in such a
way that the loop entry becomes properly aligned. The longer versions of the instructions do
not take longer time to execute, so we can save the time it takes to execute the NOP's.

7

The assembler will normally choose the shortest possible form of an instruction. It is often
possible to choose a longer form of the same or an equivalent instruction. This can be done
in several ways.

Use general form instead of short form of an instruction

The short forms of | NC, DEC, PUSH, POP, XCHG, ADD, MOV do not have a mod-reg-r/m byte (see
p. 24). The same instructions can be coded in the general form with a mod-reg-r/m byte.
Examples:

Exanmpl e 10.16. Making instructions |onger

inc eax ; short form 1 byte (in 32-bit node only)
DB OFFH, OCOH ; long formof INC EAX, 2 bytes

push ebx ; short form 1 byte

DB OFFH, OF3H ; long formof PUSH EBX, 2 bytes

Use an equivalent instruction that is longer
Examples:

Exampl e 10.17. Making instructions |onger

inc eax ; 1 byte (in 32-bit node only)

add eax, 1 ; 3 bytes replacement for | NC EAX

nov eax, ebx ; 2 bytes

| ea eax, [ebx] ; can be any length from2 to 8 bytes, see bel ow

Use 4-bytes immediate operand

Instructions with a sign-extended 8-bit immediate operand can be replaced by the version
with a 32-bit immediate operand:

Exanmpl e 10. 18. Making instructions |onger

add ebx,1 ; 3 bytes. Uses sign-extended 8-bit operand
add ebx, 9999 ; Use dummy constant too big for 8-bit operand
ORG $ - 4 ; Go back 4 bytes..

DD 1 ; and overwite the 9999 operand with a 1.

The above will encode ADD EBX, 1 using 6 bytes of code.

Add zero displacement to pointer

An instruction with a pointer can have a displacement of 1 or 4 bytes in 32-bit or 64-bit
mode (1 or 2 bytes in 16-bit mode). A dummy displacement of zero can be used for making
the instruction longer:

Exanmpl e 10.19. Making instructions |onger

nov eax, [ebx] ; 2 bytes

nov eax, [ebx+1] ; Add 1-byte displacenent. Total length = 3
ORG $ -1 ; Go back one byte..

DB O ; and overwite displacenent with O

nov eax, [ebx+9999]; Add 4-byte di splacenment. Total length = 6
ORG $ - 4 ; Go back 4 bytes..

DD O ; and overwite displacenent with 0

The same can be done with LEA EAX, [EBX+0] as a replacement for MOV EAX, EBX.

78

Use SIB byte

An instruction with a memory operand can have a SIB byte (see p. 24). A SIB byte can be
added to an instruction that doesn't already have one to make the instruction one byte
longer. A SIB byte cannot be used in 16-bit mode or in 64-bit mode with a RIP-relative
address. Example:

; Exanpl e 10.20. Making instructions |onger

nov eax, [ebx] ; Length = 2 bytes

DB 8BH, 04H, 23H ; Same with SIB byte. Length = 3 bytes
DB 8BH, 44H, 23H, O0OH ; Wth SIB byte and di spl acenent. 4 bytes

Use prefixes

An easy way to make an instruction longer is to add unnecessary prefixes. All instructions
with a memory operand can have a segment prefix. The DS segment prefix is rarely
needed, but it can be added without changing the meaning of the instruction:

Exanpl e 10.21. Making instructions |onger
DB 3EH ; DS segnent prefix
nov eax, [ebx] ; prefix + instruction = 3 bytes

All instructions with a memory operand can have a segment prefix, including LEA. It is
actually possible to add a segment prefix even to instructions without a memory operand.
Such meaningless prefixes are simply ignored. But there is no absolute guarantee that the
meaningless prefix will not have some meaning on future processors. For example, the P4
uses segment prefixes on branch instructions as branch prediction hints. The probability is
very low, | would say, that segment prefixes will have any adverse effect on future
processors for instructions that could have a memory operand, i.e. instructions with a mod-
reg-r/m byte.

CS, DS, ES and SS segment prefixes have no effect in 64-bit mode, but they are still
allowed, according to AMD64 Architecture Programmer’s Manual, Volume 3: General-
Purpose and System Instructions, 2003.

In 64-bit mode, you can also use an empty REX prefix to make instructions longer:

; Exanpl e 10.22. Making instructions |onger
DB 40H ; enpty REX prefix
nov eax, [rbx] ; prefix + instruction = 3 bytes

Empty REX prefixes can safely be applied to almost all instructions in 64-bit mode that do
not already have a REX prefix, except instructions that use AH, BH, CH or DH. REX prefixes
cannot be used in 32-bit or 16-bit mode. A REX prefix must come after any other prefixes,
and no instruction can have more than one REX prefix.

AMD's optimization manual recommends the use of up to three operand size prefixes (66H)
as fillers. But this prefix can only be used on instructions that are not affected by this prefix,
i.e. NOP and floating point ST() instructions. Segment prefixes are more widely applicable
and have the same effect - or rather lack of effect.

It is possible to add multiple identical prefixes to any instruction as long as the total
instruction length does not exceed 15. For example, you can have an instruction with two or
three DS segment prefixes. But instructions with multiple prefixes take extra time to decode,
especially on older processors. Do not use more than three prefixes on AMD processors,
including any necessary prefixes. There is no limit to the number of prefixes that can be
decoded efficiently on Core2 processors, as long as the total instruction length is no more
than 15 bytes, but earlier Intel processors can handle no more than one or two prefixes
without penalty.

79

Itis not a good idea to use address size prefixes as fillers because this may slow down
instruction decoding.

Do not place dummy prefixes immediately before a jump label to align it:

; Exanple 10.23. Wong way of making instructions |onger
L1: nov ecx, 1000
DB 3EH ; DS segnent prefix. Wong!
L2: nov eax,[esi] ; Executed both with and w thout prefix

In this example, the MOV EAX, [ESI] instruction will be decoded with a DS segment prefix
when we come from L1, but without the prefix when we come from L2. This works in
principle, but some microprocessors remember where the instruction boundaries are, and
such processors will be confused when the same instruction begins at two different
locations. There may be a performance penalty for this.

Processors supporting the AVX instruction set use VEX prefixes, which are 2 or 3 bytes
long. A 2-bytes VEX prefix can always be replaced by a 3-bytes VEX prefix. A VEX prefix
can be preceded by segment prefixes but not by any other prefixes. No other prefix is
allowed after the VEX prefix. Only instructions using XMM or YMM registers can have a
VEX prefix. Do not mix vector instructions with and without VEX prefixes. It is possible that
VEX prefixes will be allowed on other instructions in future instruction sets.

It is recommended to check hand-coded instructions with a debugger or disassembler to
make sure they are correct.

10.7 Using multi-byte NOPs for alignment

The multi-byte NOP instruction has the opcode OF 1F + a dummy memory operand. The
length of the multi-byte NOP instruction can be adjusted by optionally adding 1 or 4 bytes of
displacement and a SIB byte to the dummy memory operand and by adding one or more
66H prefixes. An excessive number of prefixes can cause delay on older microprocessors,
but at least two prefixes is acceptable on most processors. NOPs of any length up to 10
bytes can be constructed in this way with no more than two prefixes. If the processor can
handle multiple prefixes without penalty then the length can be up to 15 bytes.

The multi-byte NOP is more efficient than the commonly used pseudo-NOPs such as MOV
EAX, EAX or LEA RAX, [RAX+0] . The multi-byte NOP instruction is supported on all Intel P6
family processors and later, as well as AMD Athlon, K7 and later, i.e. all processors that
support conditional moves.

11 Optimizing memory access

Reading from the level-1 cache takes approximately 3 clock cycles. Reading from the level-
2 cache takes in the order of magnitude of 10 clock cycles. Reading from main memory
takes in the order of magnitude of 100 clock cycles. The access time is even longer if a
DRAM page boundary is crossed, and extremely long if the memory area has been
swapped to disk. | cannot give exact access times here because it depends on the
hardware configuration and the figures keep changing thanks to the fast technological
development.

However, it is obvious from these numbers that caching of code and data is extremely
important for performance. If the code has many cache misses, and each cache miss costs
more than a hundred clock cycles, then this can be a very serious bottleneck for the
performance.

80

More advice on how to organize data for optimal caching are given in manual 1: "Optimizing
software in C++". Processor-specific details are given in manual 3: "The microarchitecture of
Intel, AMD and VIA CPUs" and in Intel's and AMD's software optimization manuals.

11.1 How caching works

A cache is a means of temporary storage that is closer to the microprocessor than the main
memory. Data and code that is used often, or that is expected to be used soon, is stored in
a cache so that it is accessed faster. Different microprocessors have one, two or three
levels of cache. The level-1 cache is close to the microprocessor kernel and is accessed in
just a few clock cycles. A bigger level-2 cache is placed on the same chip or at least in the
same housing.

The level-1 data cache in the P4 processor, for example, can contain 8 kb of data. It is
organized as 128 lines of 64 bytes each. The cache is 4-way set-associative. This means
that the data from a particular memory address cannot be assigned to an arbitrary cache
line, but only to one of four possible lines. The line length in this example is 2° = 64. So each
line must be aligned to an address divisible by 64. The least significant 6 bits, i.e. bit 0 - 5, of
the memory address are used for addressing a byte within the 64 bytes of the cache line. As
each set comprises 4 lines, there will be 128 /4 =32 = 2° different sets. The next five bits,
i.e. bits 6 - 10, of a memory address will therefore select between these 32 sets. The
remaining bits can have any value. The conclusion of this mathematical exercise is that if
bits 6 - 10 of two memory addresses are equal, then they will be cached in the same set of
cache lines. The 64-byte memory blocks that contend for the same set of cache lines are
spaced 2'" = 2048 bytes apart. No more than 4 such addresses can be cached at the same
time.

Let me illustrate this by the following piece of code, where EDI holds an address divisible by
64:

; Exanple 11.1. Level-1 cache contention
again: nov eax, [edi]

nov ebx, [edi + 0804h]
nov ecx, [edi + 1000h]
nov edx, [edi + 5008h]
nov esi, [edi + 583ch]
sub ebp, 1

jnz again

The five addresses used here all have the same set-value because the differences between
the addresses with the lower 6 bits truncated are multiples of 2048 = 800H. This loop will
perform poorly because at the time we read ESI , there is no free cache line with the proper
set-value, so the processor takes the least recently used of the four possible cache lines -
that is the one which was used for EAX - and fills it with the data from [EDI +5800H] to

[EDI +583FH] and reads ESI . Next, when reading EAX, we find that the cache line that held
the value for EAX has now been discarded, so the processor takes the least recently used
line, which is the one holding the EBX value, and so on. We have nothing but cache misses,
but if the 5'th line is changed to MOv ESI, [EDI + 5840H] then we have crossed a 64 byte
boundary, so that we do not have the same set-value as in the first four lines, and there will
be no problem assigning a cache line to each of the five addresses.

The cache sizes, cache line sizes, and set associativity on different microprocessors are
listed in manual 4: "Instruction tables". The performance penalty for level-1 cache line
contention can be quite considerable on older microprocessors, but on newer processors
such as the P4 we loose only a few clock cycles because the data are likely to be
prefetched from the level-2 cache, which is accessed quite fast through a full-speed 256 bit
data bus. The improved efficiency of the level-2 cache in the P4 compensates for the
smaller level-1 data cache.

81

The cache lines are always aligned to physical addresses divisible by the cache line size (in
the above example 64). When we have read a byte at an address divisible by 64, then the
next 63 bytes will be cached as well, and can be read or written to at almost no extra cost.
We can take advantage of this by arranging data items that are used near each other
together into aligned blocks of 64 bytes of memory.

The level-1 code cache works in the same way as the data cache, except on processors
with a trace cache (see below). The level-2 cache is usually shared between code and data.

11.2 Trace cache

The Intel P4 and P4E processors have a trace cache instead of a code cache. The trace
cache stores the code after it has been translated to micro-operations (uops) while a normal
code cache stores the raw code without translation. The trace cache removes the
bottleneck of instruction decoding and attempts to store the code in the order in which it is
executed rather than the order in which it occurs in memory. The main disadvantage of a
trace cache is that the code takes more space in a trace cache than in a code cache. Later
Intel processors do not have a trace cache.

11.3 pop cache

The Intel Sandy Bridge processor has a traditional code cache before the decoders and a
pop cache after the decoders. Future Intel processors may have the same. The pop cache
is a big advantage because instruction decoding is often a bottleneck on Intel processors.
The capacity of the pop cache is smaller than the capacity of the level-1 code cache. The
pop cache is such a critical resource that the programmer should economize its use and
make sure the critical part of the code fits into the pop cache. One way to economize trace
cache use is to avoid loop unrolling.

11.4 Alignment of data

All data in RAM should be aligned at addresses divisible by a power of 2 according to this
scheme:

Operand size Alignment
1 (byte) 1
2 (word) 2
4 (dword) 4
6 (fword) 8
8 (gqword) 8
10 (t byt e) 16
16 (owor d, xmmnor d) 16
32 (ynmnor d) 32
Table 11.1. Preferred data alignment

The following example illustrates alignment of static data.

Exanpl e 11.2, alignnent of static data

. data

A DQ ?, ? ; Ais aligned by 16

B DB 32 DUP (?)

C DD *?

D DW ?

ALI GN 16 ; E must be aligned by 16
E DQ ?, ?

82

. code
nmovdga xmmO, [A]
novdga [E], xmmD

In the above example, A, B and C all start at addresses divisible by 16. D starts at an address
divisible by 4, which is more than sufficient because it only needs to be aligned by 2. An
alignment directive must be inserted before E because the address after D is not divisible by
16 as required by the MOVDQA instruction. Alternatively, E could be placed after A or B to
make it aligned.

Most microprocessors have a penalty of several clock cycles when accessing misaligned
data that cross a cache line boundary. AMD K8 and earlier processors also have a penalty
when misaligned data cross an 8-byte boundary, and some early Intel processors (P1,
PMMX) have a penalty for misaligned data crossing a 4-byte boundary. Most processors
have a penalty when reading a misaligned operand shortly after writing to the same
operand.

Most XMM instructions that read or write 16-byte memory operands require that the
operand is aligned by 16. Instructions that accept unaligned 16-byte operands can be quite
inefficient.

There is a trend towards relieving restraints on the alignment of memory operands. The
Nehalem and Sandy Bridge can handle misaligned memory operands very efficiently, and
future processors from Intel and AMD will be able to do most XMM and YMM instructions
with misaligned memory operands.

Aligning data stored on the stack can be done by rounding down the value of the stack
pointer. The old value of the stack pointer must of course be restored before returning. A
function with aligned local data may look like this:

; Exanple 11.3a, Explicit alignment of stack (32-bit W ndows)
_FuncW t hAl'i gn PROC NEAR

push ebp ; Prol og code

nov ebp, esp ; Save val ue of stack pointer
sub esp, Local Space ; Al'l ocate space for |ocal data
and esp, OFFFFFFFOH ; (= -16) Align ESP by 16

nov eax, [ebp+8] ; Function paraneter = array
novdqu xmD, [eax] ; Load from unaligned array
novdga [esp],xmD ; Store in aligned space

call SoneQ her Function ; Call sone other function

nov esp, ebp ; Epilog code. Restore esp

pop ebp ; Restore ebp

ret
_FuncW t hAl'i gn ENDP

This function uses EBP to address function parameters, and ESP to address aligned local
data. ESP is rounded down to the nearest value divisible by 16 simply by AND'ing it with -16.
You can align the stack by any power of 2 by AND'ing the stack pointer with the negative
value.

All 64-bit operating systems, and some 32-bit operating systems (Mac OS, optional in Linux)
keep the stack aligned by 16 at all CALL instructions. This eliminates the need for the AND
instruction and the frame pointer. It is necessary to propagate this alignment from one CALL
instruction to the next by proper adjustment of the stack pointer in each function:

; Exanple 11.3b, Propagate stack alignnment (32-bit Linux)
FuncW t hAl i gn PROC NEAR
sub esp, 28 ; Al'l ocate space for |ocal data

83

nov eax, [esp+32] ; Function paraneter = array

movdqu xmD, [eax] ; Load from unaligned array
novdga [esp], xmD ; Store in aligned space
call SoneQt her Function ; This call nust be aligned

ret

FuncW t hAl i gn ENDP
In example 11.3b we are relying on the fact that the stack pointer is aligned by 16 before the
call to FuncW t hAl i gn. The CALL FuncW t hAl i gn instruction (not shown here) has pushed
the return address on the stack, whereby 4 is subtracted from the stack pointer. We have to
subtract another 12 from the stack pointer before it is aligned by 16 again. The 12 is not
enough for the local variable that needs 16 bytes so we have to subtract 28 to keep the
stack pointer aligned by 16. 4 for the return address + 28 = 32, which is divisible by 16.
Remember to include any PUSH instructions in the calculation. If, for example, there had
been one PUSH instruction in the function prolog then we would subtract 24 from ESP to keep
it aligned by 16. Example 11.3b needs to align the stack for two reasons. The MOVDQA
instruction needs an aligned operand, and the CALL SoneQt her Funct i on needs to be
aligned in order to propagate the correct stack alignment to SoneQ her Funct i on.

The principle is the same in 64-bit mode:

; Exanple 11.3c, Propagate stack alignnment (64-bit Linux)
FuncW t hAl i gn PROC

sub rsp, 24 ; Al'locate space for |ocal data
nov rax, rdi ; Function paranmeter rdi = array
novdqu xmD, [r ax] ; Load from unaligned array
novdga [rsp], xmD ; Store in aligned space

call SoneQt her Function ; This call nust be aligned

r et
FuncW t hAl i gn ENDP
Here, the return address takes 8 bytes and we subtract 24 from RSP, so that the total

amount subtracted is 8 + 24 = 32, which is divisible by 16. Every PUSH instruction subtracts
8 from RSP in 64-bit mode.

Alignment issues are also important when mixing C++ and assembly language. Consider
this C++ structure:

/1 Exanple 11.4a, C++ structure
struct abcd {

unsi gned char a; /1 takes 1 byte storage
int b; /1 4 bytes storage
short int c; /1 2 bytes storage
doubl e d; /1 8 bytes storage

}ox;

Most compilers (but not all) will insert three empty bytes between a and b, and six empty
bytes between c and d in order to give each element its natural alignment. You may change
the structure definition to:

/1 Exanple 11.4b, C++ structure
struct abcd {

doubl e d; /1 8 bytes storage
int b; /'l 4 bytes storage
short int c; /1l 2 bytes storage
unsi gned char a; /1 1 byte storage
char unused[1]; /1 fill up to 16 bytes

}ox;
84

This has several advantages: The implementation is identical on compilers with and without
automatic alignment, the structure is easily translated to assembly, all members are properly
aligned, and there are fewer unused bytes. The extra unused character in the end makes
sure that all elements in an array of structures are properly aligned.

See page 156 for how to move unaligned blocks of data efficiently.

11.5 Alignment of code

Most microprocessors fetch code in aligned 16-byte or 32-byte blocks. If an important
subroutine entry or jump label happens to be near the end of a 16-byte block then the
microprocessor will only get a few useful bytes of code when fetching that block of code. It
may have to fetch the next 16 bytes too before it can decode the first instructions after the
label. This can be avoided by aligning important subroutine entries and loop entries by 16.
Aligning by 8 will assure that at least 8 bytes of code can be loaded with the first instruction
fetch, which may be sufficient if the instructions are small. We may align subroutine entries
by the cache line size (typically 64 bytes) if the subroutine is part of a critical hot spot and
the preceding code is unlikely to be executed in the same context.

A disadvantage of code alignment is that some cache space is lost to empty spaces before
the aligned code entries.

In most cases, the effect of code alignment is minimal. So my recommendation is to align
code only in the most critical cases like critical subroutines and critical innermost loops.

Aligning a subroutine entry is as simple as putting as many NOP's as needed before the
subroutine entry to make the address divisible by 8, 16, 32 or 64, as desired. The assembler
does this with the ALI GN directive. The NOP's that are inserted will not slow down the
performance because they are never executed.

It is more problematic to align a loop entry because the preceding code is also executed. It
may require up to 15 NOP's to align a loop entry by 16. These NOP's will be executed before
the loop is entered and this will cost processor time. It is more efficient to use longer
instructions that do nothing than to use a lot of single-byte NOP's. The best modern
assemblers will do just that and use instructions like MOV EAX, EAX and

LEA EBX, [EBX+00000000H] to fill the space before an ALI GN nn statement. The LEA
instruction is particularly flexible. It is possible to give an instruction like LEA EBX, [EBX]
any length from 2 to 8 by variously adding a SIB byte, a segment prefix and an offset of one
or four bytes of zero. Don't use a two-byte offset in 32-bit mode as this will slow down
decoding. And don't use more than one prefix because this will slow down decoding on
older Intel processors.

Using pseudo-NOPs such as MOV RAX, RAX and LEA RBX, [RBX+0] as fillers has the
disadvantage that it has a false dependence on the register, and it uses execution
resources. It is better to use the multi-byte NOP instruction which can be adjusted to the
desired length. The multi-byte NOP instruction is available in all processors that support
conditional move instructions, i.e. Intel PPro, P2, AMD Athlon, K7 and later.

An alternative way of aligning a loop entry is to code the preceding instructions in ways that
are longer than necessary. In most cases, this will not add to the execution time, but
possibly to the instruction fetch time. See page 77 for details on how to code instructions in
longer versions.

The most efficient way to align an innermost loop is to move the preceding subroutine entry.
The following example shows how to do this:

; Exanple 11.5, Aligning |oop entry
85

ALI GN 16

X1 =9 ; Replace value with whatever X2 is.
DB (-X1 AND OFH) DUP (90H) ; Insert cal cul ated nunber of NOP's.
I NNERFUNCTI ON PROC NEAR ; This address will be adjusted

nov eax, [esp+4]
nmov ecx, 10000

| NNERL OOP: ; Loop entry will be aligned by 16
X2 = I NNERLOOP - | NNERFUNCTI ON ; This value is needed above
.ERRNZ X1 NE X2 ; Make error nessage if X1 !'= X2

sub ecx, 1
jnz | NNERLOOP
ret

| NNERFUNCTI ON ENDP

This code looks awkward because most assemblers cannot resolve the forward reference to
a difference between two labels in this case. X2 is the distance from | NNERFUNCTI ON to

I NNERLOOP. X1 must be manually adjusted to the same value as X2 by looking at the
assembly listing. The . ERRNZ line will generate an error message from the assembler if X1
and X2 are different. The number of bytes to insert before | NNERFUNCTI ON in order to align

I NNERLOCOP by 16 is ((-X1) modulo 16). The modulo 16 is calculated here by AND'ing with
15. The DB line calculates this value and inserts the appropriate number of NOP's with
opcode 90H.

I NNERLOCP is aligned here by misaligning | NNERFUNCTI ON. The cost of misaligning
I NNERFUNCTI ON is negligible compared to the gain by aligning | NNERLOOP because the latter
label is jumped to 10000 times as often.

11.6 Organizing data for improved caching

The caching of data works best if critical data are contained in a small contiguous area of
memory. The best place to store critical data is on the stack. The stack space that is
allocated by a subroutine is released when the subroutine returns. The same stack space is
then reused by the next subroutine that is called. Reusing the same memory area gives the
optimal caching. Variables should therefore be stored on the stack rather than in the data
segment when possible.

Floating point constants are typically stored in the data segment. This is a problem because
it is difficult to keep the constants used by different subroutines contiguous. An alternative is
to store the constants in the code. In 64-bit mode it is possible to load a double precision
constant via an integer register to avoid using the data segment. Example:

Exanmpl e 11. 6a. Loadi ng doubl e constant from data segnent

.data
Cl DQ SoneConstant

. code
nmovsd xmmD, C1

This can be changed to:

; Exanple 11.6b. Loadi ng double constant fromregister (64-bit node)

. code
nmov rax, SonmeConstant
nmovg xmoD, rax ; Some assenblers use 'nmovd' for this instruction

See page 121 for various methods of generating constants without loading data from
memory. This is advantageous if data cache misses are expected, but not if data caching is
efficient.

86

Constant tables are typically stored in the data segment. It may be advantageous to copy
such a table from the data segment to the stack outside the innermost loop if this can
improve caching inside the loop.

Static variables are variables that are preserved from one function call to the next. Such
variables are typically stored in the data segment. It may be a better alternative to
encapsulate the function together with its data in a class. The class may be declared in the
C++ part of the code even when the member function is coded in assembly.

Data structures that are too large for the data cache should preferably be accessed in a
linear, forward way for optimal prefetching and caching. Non-sequential access can cause
cache line contentions if the stride is a high power of 2. Manual 1: "Optimizing software in
C++" contains examples of how to avoid access strides that are high powers of 2.

11.7 Organizing code for improved caching

The caching of code works best if the critical part of the code is contained within a
contiguous area of memory no bigger than the code cache. Avoid scattering critical
subroutines around at random memory addresses. Rarely accessed code such as error
handling routines should be kept separate from the critical hot spot code.

It may be useful to split the code segment into different segments for different parts of the
code. For example, you may make a hot code segment for the code that is executed most
often and a cold code segment for code that is not speed-critical.

Alternatively, you may control the order in which modules are liked, so that modules that are
used in the same part of the program are linked at addresses near each other.

Dynamic linking of function libraries (DLL's or shared objects) makes code caching less
efficient. Dynamic link libraries are typically loaded at round memory addresses. This can
cause cache contentions if the distances between multiple DLL's are divisible by high
powers of 2.

11.8 Cache control instructions

Memory writes are more expensive than reads when cache misses occur in a write-back
cache. A whole cache line has to be read from memory, modified, and written back in case
of a cache miss. This can be avoided by using the non-temporal write instructions MOVNTI ,
MOVNTQ, MOVNTDQ, MOVNTPD, MOVNTPS. These instructions should be used when writing to a
memory location that is unlikely to be cached and unlikely to be read from again before the
would-be cache line is evicted. As a rule of thumb, it can be recommended to use non-
temporal writes only when writing a memory block that is bigger than half the size of the
largest-level cache.

Explicit data prefetching with the PREFETCH instructions can sometimes improve cache
performance, but in most cases the automatic prefetching is sufficient.

12 Loops

The critical hot spot of a CPU-intensive program is almost always a loop. The clock
frequency of modern computers is so high that even the most time-consuming instructions,
cache misses and inefficient exceptions are finished in a fraction of a microsecond. The
delay caused by inefficient code is only noticeable when repeated millions of times. Such
high repeat counts are likely to be seen only in the innermost level of a series of nested

87

loops. The things that can be done to improve the performance of loops is discussed in this
chapter.

12.1 Minimize loop overhead

The loop overhead is the instructions needed for jumping back to the beginning of the loop
and to determine when to exit the loop. Optimizing these instructions is a fairly general
technique that can be applied in many situations. Optimizing the loop overhead is not
needed, however, if some other bottleneck is limiting the speed. See page 92ff for a
description of possible bottlenecks in a loop.

A typical loop in C++ may look like this:
/1 Exanmple 12.1a. Typical for-loop in C++
for (int i =0; i <n; i++) {
/1 (1 oop body)
}

Without optimization, the assembly implementation will look like this:

; Exanple 12.1b. For-loop, not optim zed

nov ecx, n ; Load n
Xor eax, eax ;1 =0
LoopTop:
cnp eax, ecx ;1< n
j ge LoopEnd ; Exit when i >=n
; (1l oop body) ; Loop body goes here
add eax, 1 N
jmp LoopTop ; Jump back
LoopEnd:

It may be unwise to use the i nc instruction for adding 1 to the loop counter. The i nc
instruction has a problem with writing to only part of the f | ags register, which makes it less
efficient than the add instruction on P4 processors and may cause false dependences on
other processors.

The most important problem with the loop in example 12.1b is that there are two jump
instructions. We can eliminate one jump from the loop by putting the branch instruction in
the end:

Exampl e 12.1c. For-loop with branch in the end

nov ecx, n ; Load n

test ecx, ecx ; Test n

jng LoopEnd ; Skipif n<=0

Xor eax, eax ;1 =0
LoopTop:

(1 oop body) ; Loop body goes here

add eax, 1 N

cnp eax, ecx ;1< n

il LoopTop ; Loop back if i <n
LoopEnd:

Now we have got rid of the unconditional jump instruction in the loop by putting the loop exit
branch in the end. We have to put an extra check before the loop to cover the case where
the loop should run zero times. Without this check, the loop would run one time when n = 0.

The method of putting the loop exit branch in the end can even be used for complicated

loop structures that have the exit condition in the middle. Consider a C++ loop with the exit
condition in the middle:

88

/1 Exanple 12.2a. C++ loop with exit

int i 0;

while (true) {
FuncA() ;
if (++i
FuncB() ;

>= n) break;

}

in the mddle

/'l Upper | oop body
/1 Exit condition here
/1 Lower | oop body

This can be implemented in assembly by reorganizing the loop so that the exit comes in the

end and the entry comes in the mid

Exampl e 12.2b. Assenbly | oop with

Xor eax, eax
jmp LoopEntry
LoopTop:
call FuncB
LoopEntry:
call FuncA
add eax, 1
cnp eax, n
jge LoopTop

dle:

entry in the mddle
0
Junp into mddle of

| =
| oop

Lower | oop body cones first

Upper | oop body cones | ast

Exit condition in the end

The cnp instruction in example 12.1c and 12.2b can be eliminated if the counter ends at
zero because we can rely on the add instruction for setting the zero flag. This can be done
by counting down from n to zero rather counting up from zero to n:

Exanple 12.3. Loop with

counti ng down

nov ecx, n Load n

test ecx, ecx ; Test n

jng LoopEnd ; Skipif n<=0
LoopTop:

(1 oop body) ; Loop body goes here

sub ecx, 1 ; n--

jnz LoopTop ; Loop back if not zero
LoopEnd:

Now the loop overhead is reduced to just two instructions, which is the best possible. The
j ecxz and | oop instructions should be avoided because they are less efficient.

The solution in example 12.3 is not good if i is needed inside the loop, for example for an
array index. The following example adds 1 to all elements in an integer array:

Exanmpl e 12.4a. For-loop with array

nmov ecx, n ; Load n

test ecx, ecx ; Test n

jng LoopEnd Skipif n<=20

Xor eax, eax i =0

lea esi, Array Pointer to an array
LoopTop:

Loop body: Add 1 to all elenents in Array:

add dword ptr [esi+4*eax], 1

add eax, 1 i ++

cnp eax, ecx ;i< n

il LoopTop ; Loop back if i <n
LoopEnd:

The address of the start of the array is in esi and the index in eax. The index is multiplied
by 4 in the address calculation because the size of each array element is 4 bytes.

It is possible to modify example 12.4a to make it count down rather than up, but the data
cache is optimized for accessing data forwards, not backwards. Therefore it is better to

89

count up through negative values from - n to zero. This is possible by making a pointer to
the end of the array and using a negative offset from the end of the array:

; Exanple 12.4b. For-loop with negative index fromend of array

nov ecx, n ; Load n

lea esi, Array[4*ecx] ; Point to end of array

neg ecx ;1= -n

jnl LoopEnd ; Skipif (-n) >=0
LoopTop:

Loop body: Add 1 to all elements in Array:
add dword ptr [esi+4*ecx], 1

add ecx, 1 ;o0
js LoopTop ; Loop back if i <0
LoopEnd:

A slightly different solution is to multiply n by 4 and count from - 4* n to zero:

Exampl e 12.4c. For-loop with neg. index multiplied by el enent size

nov ecx, n ; Load n
shl ecx, 2 ;o n* 4
jng LoopEnd ; Skipif (4*n) <=0
lea esi, Array[ecx] ; Point to end of array
neg ecx ;1= -4*%n

LoopTop:

Loop body: Add 1 to all elenments in Array:
add dword ptr [esi+ecx], 1

add ecx, 4 ;o += 4
js LoopTop ; Loop back if i <O
LoopEnd:

There is no difference in speed between example 12.4b and 12.4c, but the latter method is
useful if the size of the array elements is not 1, 2, 4 or 8 so that we cannot use the scaled
index addressing.

The loop counter should always be an integer because floating point compare instructions
are less efficient than integer compare instructions, even with the SSE2 instruction set.
Some loops have a floating point exit condition by nature. A well-known example is a Taylor
expansion which is ended when the terms become sufficiently small. It may be useful in
such cases to always use the worst-case maximum repeat count (see page 104). The cost
of repeating the loop more times than necessary is often less than what is saved by
avoiding the calculation of the exit condition in the loop and using an integer counter as loop
control. A further advantage of this method is that the loop exit branch becomes more
predictable. Even when the loop exit branch is mispredicted, the cost of the misprediction is
smaller with an integer counter because the integer instructions are likely to be executed
way ahead of the slower floating point instructions so that the misprediction can be resolved
much earlier.

12.2 Induction variables

If the floating point value of the loop counter is needed for some other purpose then it is
better to have both an integer counter and a floating point counter. Consider the example of
a loop that makes a sine table:

/1 Example 12.5a. C++ | oop to make sine table

doubl e Tabl e[100]; int i

for (i =0; i < 100; i++) Table[i] = sin(0.01 * i);
This can be changed to:

/1 Exanmple 12.5b. C++ | oop to nmake sine table
90

doubl e Tabl e[100], x; int i
for (i =0, x =0.; i <100; i++, x += 0.01) Table[i] = sin(x);

Here we have an integer counter i for the loop control and array index, and a floating point
counter x for replacing 0. 01*i . The calculation of x by adding 0. 01 to the previous value is
much faster than converting i to floating point and multiplying by 0. 01. The assembly
implementation looks like this:

Exanpl e 12.5c. Assenbly |oop to nake sine table

.data
align 8
MD_ 01 dq 0.01 ; Define constant 0.01
_Table dq 100 dup (?) ; Define Table
. code
Xor eax, eax ;1 =0
fld M_01 ; Load constant 0.01
fldz oo x = 0.
LoopTop:
fld st(0) ; Copy X
fsin ; sin(x)
fstp _Tabl e[eax*8] ; Table[i] = sin(x)
fadd st (0), st(1) ; X += 0.01
add eax, 1 N
cnp eax, 100 ;1< n
jb LoopTop ; Loop
f conpp ; Discard st(0) and st(1)

There is no need to optimize the loop overhead in this case because the speed is limited by
the floating point calculations. Another possible optimization is to use a library function that
calculates two or four sine values at a time in an XMM register. Such functions can be found
in libraries from Intel and AMD, see manual 1: "Optimizing software in C++".

The method of calculating x in example 12.5¢c by adding 0. 01 to the previous value rather
than multiplying i by 0. 01 is commonly known as using an induction variable. Induction
variables are useful whenever it is easier to calculate some value in a loop from the
previous value than to calculate it from the loop counter. An induction variable can be
integer or floating point. The most common use of induction variables is for calculating array
addresses, as in example 12.4c, but induction variables can also be used for more complex
expressions. Any function that is an n'th degree polynomial of the loop counter can be
calculated with just n additions and no multiplications by the use of n induction variables.
See manual 1: "Optimizing software in C++" for an example.

The calculation of a function of the loop counter by the induction variable method makes a
loop-carried dependency chain. If this chain is too long then it may be advantageous to
calculate each value from a value that is two or more iterations back, as in the Taylor
expansion example on page 106.

12.3 Move loop-invariant code

The calculation of any expression that doesn't change inside the loop should be moved out
of the loop.

The same applies to if-else branches with a condition that doesn't change inside the loop.

Such a branch can be avoided by making two loops, one for each branch, and making a
branch that chooses between the two loops.

91

12.4 Find the bottlenecks

There are a number of possible bottlenecks that can limit the performance of a loop. The
most likely bottlenecks are:

» Cache misses and cache contentions

¢ Loop-carried dependency chains

» Instruction fetching

¢ Instruction decoding

* Instruction retirement

¢ Register read stalls

* Execution port throughput

¢ Execution unit throughput

» Suboptimal reordering and scheduling of pyops

¢ Branch mispredictions

* Floating point exceptions and denormal operands
If one particular bottleneck is limiting the performance then it doesn't help to optimize
anything else. It is therefore very important to analyze the loop carefully in order to identify
which bottleneck is the limiting factor. Only when the narrowest bottleneck has successfully
been removed does it make sense to look at the next bottleneck. The various bottlenecks
are discussed in the following sections. All these details are processor-specific. See manual
3: "The microarchitecture of Intel, AMD and VIA CPUs" for explanation of the processor-
specific details mentioned below.
Sometimes a lot of experimentation is needed in order to find and fix the limiting bottleneck.

It is important to remember that a solution found by experimentation is CPU-specific and
unlikely to be optimal on CPUs with a different microarchitecture.

12.5 Instruction fetch, decoding and retirement in a loop

The details about how to optimize instruction fetching, decoding, retirement, etc. is
processor-specific, as mentioned on page 62.

If code fetching is a bottleneck then it is necessary to align the loop entry by 16 and reduce
instruction sizes in order to minimize the number of 16-byte boundaries in the loop.

If instruction decoding is a bottleneck then it is necessary to observe the CPU-specific rules
about decoding patterns. Avoid complex instructions such as LOOP, JECXZ, LODS, STCS, etc.

Register read stalls can occur in some Intel processors. If register read stalls are likely to
occur then it can be necessary to reorder instructions or to refresh registers that are read
multiple times but not written to inside the loop.

Jumps and calls inside the loop should be avoided because it delays code fetching.
Subroutines that are called inside the loop should be inlined if possible.

92

Branches inside the loop should be avoided if possible because they interfere with the
prediction of the loop exit branch. However, branches should not be replaced by conditional
moves if this increases the length of a loop-carried dependency chain.

If instruction retirement is a bottleneck then it may be preferred to make the total number of
pops inside the loop a multiple of the retirement rate (4 for Core2, 3 for all other
processors). Some experimentation is needed in this case.

12.6 Distribute pops evenly between execution units

Manual 4: "Instruction tables" contains tables of how many pops each instruction generates
and which execution port each pop goes to. This information is CPU-specific, of course. It is
necessary to calculate how many pops the loop generates in total and how many of these
pops go to each execution port and each execution unit.

The time it takes to retire all instructions in the loop is the total number of pops divided by
the retirement rate. The retirement rate is 4 pops per clock cycle for Core2 processors and 3
for all other processors. The calculated retirement time is the minimum execution time for
the loop. This value is useful as a norm which other potential bottlenecks can be compared
against.

The throughput for an execution port is 1 pop per clock cycle on most Intel processors. The

load on a particular execution port is calculated as the number of pops that goes to this port
divided by the throughput of the port. If this value exceeds the retirement time as calculated

above, then this particular execution port is likely to be a bottleneck. AMD processors do not
have execution ports, but they have three pipelines with similar throughputs.

There may be more than one execution unit on each execution port on Intel processors.
Most execution units have the same throughput as the execution port. If this is the case
then the execution unit cannot be a narrower bottleneck than the execution port. But an
execution unit can be a bottleneck in the following situations: (1) if the throughput of the
execution unit is lower than the throughput of the execution port, e.g. for multiplication and
division; (2) if the execution unit is accessible though more than one execution port, e.g.
floating point addition on PM; and (3) on AMD processors that have no execution ports.

The load on a particular execution unit is calculated as the total number of pops going to
that execution unit multiplied by the reciprocal throughput for that unit. If this value exceeds
the retirement time as calculated above, then this particular execution unit is likely to be a
bottleneck.

12.7 An example of analysis for bottlenecks on PM

The way to do these calculations is illustrated in the following example, which is the so-
called DAXPY algorithm used in linear algebra:

/1 Example 12.6a. C++ code for DAXPY al gorithm

int i; const int n = 100;
double X[n]; double Y[n]; double DA
for (i =0; i <n; i++) Y[i] = VY[i] - DA* Xi];

The following implementation is for a processor with the SSE2 instruction set in 32-bit
mode, assuming that X and Y are aligned by 16:

Exanpl e 12.6b. DAXPY al gorithm 32-bit node

n = 100 ; Define constant n (even and positive)
nov ecx, n * 8 ; Load n * sizeof (doubl e)
Xor eax, eax ;1 =0
lea esi, [X] ; X must be aligned by 16

93

lea edi, [V]
nmovsd xR, [DA]
shuf pd xm®2, xmm2,

0

L1: rmovapd xmmil, [esi+eax]

mul pd xnml, xm?

nmovapd xmm0, [edi +eax]

subpd xmD, xnml

novapd [edi +eax],
add eax, 16

chp eax, ecx

il L1

xnmD

DA into both gwords of xm?
; This | oop does 2 DAXPY cal cul ations per iteration,

Y nust

Load DA

CGet

Xi], Xi+1]
X[i] * DA, X i+1]
Y[i], Y[i+1]

Y[i]-Xi]*DA, Y[i+1]-Xi+1]*DA
Store result

*

be aligned by 16

DA

using vectors:

Add size of two elenments to index
Conpare with n*8

Loop

back

Now let's analyze this code for bottlenecks on a Pentium M processor, assuming that there
are no cache misses. The CPU-specific details that | am referring to are explained in

manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".

We are only interested in the loop, i.e. the code after L1. We need to list the pop breakdown
for all instructions in the loop, using the table in manual 4: "Instruction tables". The list looks

as follows:
Instruction pops pops for each execution
fused execution port units

port | port | port | port | port | port | FADD | FMUL
0 1 Oor1 2 3 4

nmovapd xmmil, [esi +eax] 2 2

mul pd xmml, xm?® 2 2 2

nmovapd xmmD, [edi +eax] 2 2

subpd xm®D, xmml 2 2 2

nmovapd [edi +eax], xmm0 2 2 2

add eax, 16 1 1

cnp eax, ecx 1 1

jl L 1 1

Total 13 2 1 4 4 2 2 2 2

Table 12.1. Total pops for DAXPY loop on Pentium M

The total number of pops going to all the ports is 15. The 4 pops from novapd

[edi +eax], xnrmD are fused into 2 pops so the total number of pops in the fused domain is
13. The total retirement time is 13 pops / 3 pops per clock cycle = 4.33 clock cycles.

Now, we will calculate the number of yops going to each port. There are 2 pops for port 0, 1
for port 1, and 4 which can go to either port 0 or port 1. This totals 7 pops for port 0 and port
1 combined so that each of these ports will get 3.5 pops on average per iteration. Each port
has a throughput of 1 pop per clock cycle so the total load corresponds to 3.5 clock cycles.

This is less than the 4.33 clock cycles for retirement, so port 0 and 1 will not be bottlenecks.
Port 2 receives 4 pops per clock cycle so it is close to being saturated. Port 3 and 4 receive

only 2 yops each.

The next analysis concerns the execution units. The FADD unit has a throughput of 1 pyop
per clock and it can receive pops from both port 0 and 1. The total load is 2 pops / 1 pop per
clock = 2 clocks. Thus the FADD unit is far from saturated. The FMUL unit has a throughput
of 0.5 pop per clock and it can receive pops only from port 0. The total load is 2 pops / 0.5

pop per clock = 4 clocks. Thus the FMUL unit is close to being saturated.

There is a dependency chain in the loop. The latencies are: 2 for memory read, 5 for

multiplication, 3 for subtraction, and 3 for memory write, which totals 13 clock cycles. This is
three times as much as the retirement time but it is not a loop-carried dependence because
the results from each iteration are saved to memory and not reused in the next iteration.

94

The out-of-order execution mechanism and pipelining makes it possible that each
calculation can start before the preceding calculation is finished. The only loop-carried
dependency chain is add eax, 16 which has a latency of only 1.

The time needed for instruction fetching can be calculated from the lengths of the
instructions. The total length of the eight instructions in the loop is 30 bytes. The processor
needs to fetch two 16-byte blocks if the loop entry is aligned by 16, or at most three 16-byte
blocks in the worst case. Instruction fetching is therefore not a bottleneck.

Instruction decoding in the PM processor follows the 4-1-1 pattern. The pattern of (fused)
pops for each instruction in the loop in example 12.6b is 2-2-2-2-2-1-1-1. This is not optimal,
and it will take 6 clock cycles to decode. This is more than the retirement time, so we can
conclude that instruction decoding is the bottleneck in example 12.6b. The total execution
time is 6 clock cycles per iteration or 3 clock cycles per calculated Y[i] value. The decoding
can be improved by moving one of the 1-pop instructions and by changing the sign of xnrm®2
so that novapd xmmD, [edi +eax] and subpd xnmm0, xnrmil can be combined into one
instruction addpd xmmi, [edi +eax]. We will therefore change the code of the loop as
follows:

Exanmpl e 12.6¢. Loop of DAXPY algorithmw th inproved decodi ng

.data
align 16
SignBit DD 0, 80000000H ; gword with sign bit set
n = 100 ; Define constant n (even and positive)
. code
nov ecx, n * 8 ; Load n * sizeof (doubl e)
Xor eax, eax ;1 =0
lea esi, [X] ; X must be aligned by 16
lea edi, [V] ;Y must be aligned by 16
novsd xR, [DA] ; Load DA
xorpd xmR, [SignBit] ; Change sign
shuf pd xmm®, xm2, 0 ; Get -DA into both gwords of xm®
L1: rmovapd xml, [esi+eax] ;o X[1], X[i+1]
mul pd xnml, xm® ;o X[i] * (-DA), Xi+1] * (-DA
addpd xmml, [edi +eax] ;o Y[i]-X[i]*DA, Y[i+1]-Xi+1]*DA
add eax, 16 ; Add size of two elenments to index
novapd [edi +eax-16], xnmml ; Address corrected for changed eax
cnp eax, ecx ; Compare with n*8

jl L1 ; Loop back

The number of pops in the loop is the same as before, but the decode pattern is now 2-2-4-
1-2-1-1 and the decode time is reduced from 6 to 4 clock cycles so that decoding is no
longer a bottleneck.

An experimental test shows that the expected improvement is not obtained. The execution
time is only reduced from 6.0 to 5.6 clock cycles per iteration. There are three reasons why
the execution time is higher than the expected 4.3 clocks per iteration.

The first reason is register read stalls. The reorder buffer can handle no more than three
reads per clock cycle from registers that have not been modified recently. Register esi , edi,
ecx and xmm® are not modified inside the loop. xm® counts as two because it is
implemented as two 64-bit registers. eax also contributes to the register read stalls
because its value has enough time to retire before it is used again. This causes a register
read stall in two out of three iterations. The execution time can be reduced to 5.4 by moving
the add eax, 16 instruction up before the nul pd so that the reads of register esi , xrm2 and
edi are separated further apart and therefore prevented from going into the reorder buffer in
the same clock cycle.

95

The second reason is retirement. The number of fused pops in the loop is not divisible by 3.
Therefore, the taken jump to L1 will not always go into the first slot of the retirement station
which it has to. This can sometimes cost a clock cycle.

The third reason is that the two pops for addpd may be issued in the same clock cycle
through port 0 and port 1, respectively, though there is only one execution unit for floating
point addition. This is the consequence of a bad design, as explained in manual 3: "The
microarchitecture of Intel, AMD and VIA CPUs".

A solution which happens to work better is to get rid of the cnp instruction by using a
negative index from the end of the arrays:

Exanmpl e 12.6d. Loop of DAXPY algorithmw th negative indexes

.data
align 16
SignBit DD 0, 80000000H ; gword with sign bit set
n = 100 ; Define constant n (even and positive)
. code
nov eax, -n * 8 ; Index = -n * sizeof (doubl e)
lea esi, [X + 8 * n] ; Point to end of array X (aligned)
lea edi, [Y + 8 * n] ; Point to end of array Y (aligned)
nmovsd xmmR2, [DA] ; Load DA
xorpd xm2, [SignBit] ; Change sign
shuf pd xm®2, xnmmR2, 0 ; Get -DA into both gwords of xm®R
L1: novapd xmml, [esi+eax] v X[i], X[i+1]
mul pd xnml, xm? ;o X[i] * (-DA), Xi+1] * (-DA
addpd xmmi, [edi +eax] ;o Y[]-X[1]*DA, Y[i+1]-X[i+1]*DA
nmovapd [edi +eax], xnmil ; Store result
add eax, 16 ; Add size of two elenents to index
js L1 ; Loop back

This removes one pop from the loop. My measurements show an execution time for
example 12.6d of 5.0 clock cycles per iteration on a PM processor. The theoretical minimum
is 4. The register read stalls have disappeared because eax now has less time to retire
before it is used again. The retirement is also improved because the number of fused pops
in the loop is now 12, which is divisible by the retirement rate of 3. The problem with the
floating point addition pops clashing remains and this is responsible for the extra clock
cycle. This problem can only be targeted by experimentation. | found that the optimal order
of the instructions has the add instruction immediately after the mul pd:

; Exanple 12.6e. Loop of DAXPY. Optimal solution for PM

.data
align 16
SignBit DD 0, 80000000H ; gword with sign bit set
n = 100 ; Define constant n (even and positive)
. code
nov eax, -n * 8 ; Index = -n * sizeof (doubl e)
lea esi, [X + 8 * nJ ; Point to end of array X (aligned)
lea edi, [Y + 8 * nJ ; Point to end of array Y (aligned)
novsd xmmR2, [DA] ; Load DA
xorpd xmR, [SignBit] ; Change sign
shuf pd xm®2, xnmm2, 0 ; Get -DA into both gwords of xm®

L1: novapd xmml, [esi+eax] ;
mul pd xnmil, xmm® ;
add eax, 16 ; Optimal position of add instruction
addpd xmmil, [edi +eax-16]; Address corrected for changed eax
novapd [edi +eax-16],xnml ; Address corrected for changed eax
js L1 ;
96

The execution time is now reduced to 4.0 clock cycles per iteration, which is the theoretical
minimum. An analysis of the bottlenecks in the loop of example 12.6e gives the following
results: The decoding time is 4 clock cycles. The retirement time is 12 / 3 = 4 clock cycles.
Port 0 and 1 are used at 75% or their capacity. Port 2 is used 100%. Port 3 and 4 are used
50%. The FMUL execution unit is used at 100% of its maximum throughput. The FADD unit
is used 50%. The conclusion is that the speed is limited by four equally narrow bottlenecks
and that no further improvement is possible.

The fact that we found an instruction order that removes the floating point pop clashing
problem is sheer luck. In more complicated cases there may not exist a solution that
eliminates this problem.

12.8 Same example on Core2

The same loop will run more efficiently on a Core2 thanks to better pop fusion and more
powerful execution units. Example 12.6c and 12.6d are good candidates for running on a
Core2. The j| L1 instruction in example 12.6¢ should be changedto jb L1 in orderto
enable macro-op fusion in 32-bit mode. This change is possible because the loop counter
cannot be negative in example 12.6c¢.

We will now analyze the resource use of the loop in example 12.6d for a Core2 processor.
The resource use of each instruction in the loop is listed in table 12.2 below.

= == Py T O0E
2 S2 | 58 °53
= Q = @ & ~ o w
< > < Q c
2 2 o =. 0
o s | S S e
>) 3
=} =
port | port | port | port | port | port
0 1 5 2 3 4
nmovapd xnml, [esi+eax] 5 1 1
mul pd xnml, xm® 4 1 1
addpd xmmi, [edi +eax] 5 1 1 1
novapd [edi +eax], xmmil 5 1 1 1
add eax, 16 3 1 X X X
Total 24 6 1.33 | 1.33 | 1.33 2 1 1

Table 12.2. Total pops for DAXPY loop on Core2 (example 12.6d).

Predecoding is not a problem here because the total size of the loop is less than 64 bytes.
There is no need to align the loop because the size is less than 50 bytes. If the loop had
been bigger than 64 bytes then we would notice that the predecoder can handle only the
first three instructions in one clock cycle because it cannot handle more than 16 bytes.

There are no restrictions on the decoders because all the instructions generate only a single
pop each. The decoders can handle four instructions per clock cycle, so the decoding time
will be 6/4 = 1.5 clock cycles per iteration.

Port 0, 1 and 2 each have one pop that can go nowhere else. In addition, the ADD EAX, 16
instruction can go to any one of these three ports. If these instructions are distributed evenly
between port 0, 1 and 2, then these ports will be busy for 1.33 clock cycle per iteration on
average.

97

Port 3 receives two pops per iteration for reading X[i] and Y[i]. We can therefore
conclude that memory reads on port 3 is the bottleneck for the DAXPY loop, and that the
execution time is 2 clock cycles per iteration.

Example 12.6¢ has one instruction more than example 12.6d, which we have just analyzed.
The extra instruction is CVP EAX, ECX, which can go to any of the ports 0, 1 and 2. This will
increase the pressure on these ports to 1.67, which is still less than the 2 pops on port 3.
The extra pop can be eliminated by macro-op fusion in 32-bit mode, but not in 64-bit mode.

The floating point addition and multiplication units all have a throughput of 1. These units
are therefore not bottlenecks in the DAXPY loop.

We need to consider the possibility of register read stalls in the loop. Example 12.6¢ has
four registers that are read, but not modified, inside the loop. This is register ESI, EDI , XM2
and ECX. This could cause a register read stall if all of these registers were read within four
consecutive pops. But the pops that read these registers are spaced so much apart that no
more than three of these can possibly be read in four consecutive pops. Example 12.6d has
one register less to read because ECX is not used. Register read stalls are therefore unlikely
to cause troubles in these loops.

The conclusion is that the Core2 processor runs the DAXPY loop in half as many clock
cycles as the PM. The problem with yop clashing that made the optimization particularly
difficult on the PM has been eliminated in the Core2 design.

12.9 Same example on Sandy Bridge

The number of elements in a vector register can be doubled on processors with the AVX
instruction set, using YMM registers, as shown in the next example:

; Exanple 12.6f. Loop of DAXPY for processors with AVX

. data
SignBit DD 0, 80000000H ; gword with sign bit set
n = 100 ; Define constant n (divisible by 4)
. code
vbroadcastsd ymm0, [SignBit] ; preload sign bit x 4
nov eax, -n * 8 ; Index = -n * sizeof (doubl e)
lea rsi, [X + 8 * n] ; Point to end of array X (aligned)
lea rdi, [Y + 8 * n] ; Point to end of array Y (aligned)
vbroadcastsd ymm2, [DA] ; Load DA x 4

vxorpd ynmm®2, ym®2, ymm0D ; Change sign

align 32
L1: vrmulpd ymml, ym®2, [rsi+rax] ; Xi]*(-DA)
vaddpd ymml, ymi, [rdi+rax] ; Y[i]-Xi]*DA
vimovapd [rdi+rax], ymml ; Store (vmovupd if not aligned by 32)

add rax, 32 ; Add size of four elenents to index
jl L1 ; Loop back
vzeroupper ; |f subsequent code is non-VEX

We will now analyze the resource use of the loop in example 12.6f for a Sandy Bridge
processor. The resource use of each instruction in the loop is listed in table 12.2 below.

98

> °e> | °% S%5
= Qg | 23 =373
c S5 c o @ c fh
,Q.. 2 o = 0
o s | 8 S o
S 5 | 3]
D 3]
> =y
port | port | port | port | port | port
0 1 5 2 3 4
viul pd ymrl, ymm®2, [r si +r ax] 5 1 1 1+
vaddpd yml, ymi, [rdi +r ax] 5 1 1 1+
viovapd [rdi+rax], ynml 5 1 1 1+
add rax, 32 4 Ya Ya
jl L1 2 V2 V2
Total 21 4 1 1 1 2 1+ 1+

Table 12.3. Total pops for DAXPY loop on Sandy Bridge (example 12.6f).

The instruction length is not important if we assume that the loop resides in the pop cache.
The ADD and JL instructions are most likely fused together, using only 1 pop together. There
are two 256-bit read operations, each using a read port for two consecutive clock cycles,
which is indicated as 1+ in the table. Using both read ports (port 2 and 3), we will have a
throughput of two 256-bit reads in two clock cycles. One of the read ports will make an
address calculation for the write in the second clock cycle. The write port (port 4) is
occupied for two clock cycles by the 256-bit write. The limiting factor will be the read and
write operations, using the two read ports and the write port at their maximum capacity. Port
0, 1 and 5 are used at half capacity. There is no loop-carried dependency chain. Thus, the
expected throughput is one iteration of four calculations in two clock cycles.

Unfortunately, the probability of cache bank conflicts is high due to the high number of
memory operations. It is difficult to predict which operands will be read or written
simultaneously because many iterations are in flight at a time. My tests on a Sandy Bridge
showed that the theoretical time of 2 clock cycles per iteration is never obtained. The best
result was 2.2 clocks per iteration when the distance between RSI and RDI is a multiple of 4
kbytes. In other cases, the time was 2.6 clock cycles or more per iteration.

12.10 Loop unrolling

A loop that does n repetitions can be replaced by a loop that repeats n/ r times and does r
calculations for each repetition, where r is the unroll factor. n should preferably be divisible
by r.

Loop unrolling can be used for the following purposes:

* Reducing loop overhead. The loop overhead per calculation is divided by the loop
unroll factor r. This is only useful if the loop overhead contributes significantly to the
calculation time. There is no reason to unroll a loop if some other bottleneck limits
the execution speed. For example, the loop in example 12.6e above cannot benefit
from further unrolling.

* Vectorization. A loop must be rolled out by r or a multiple of r in order to use vector
registers with r elements. The loop in example 12.6e is rolled out by 2 in order to use
vectors of two double-precision numbers. If we had used single-precision numbers
then we would have rolled out the loop by 4 and used vectors of 4 elements.

» Improve branch prediction. The prediction of the loop exit branch can be improved
by unrolling the loop so much that the repeat count n/r does not exceed the

99

maximum repeat count that can be predicted on a specific CPU.

Improve caching. If the loop suffers from many data cache misses or cache
contentions then it may be advantageous to schedule memory reads and writes in
the way that is optimal for a specific processor. See the optimization manual from
the microprocessor vendor for details.

Eliminate integer divisions. If the loop contains an expression where the loop counter
i is divided by an integer r or the modulo of i by r is calculated, then the integer
division can be avoided by unrolling the loop by r.

Eliminate branch inside loop. If there is a branch or a swi t ch statement inside the
loop with a repetitive pattern of period r then this can be eliminated by unrolling the
loop by r. For example, if an if-else branch goes either way every second time then
this branch can be eliminated by rolling out by 2.

Break loop-carried dependency chain. A loop-carried dependency chain can in some
cases be broken up by using multiple accumulators. The unroll factor r is equal to
the number of accumulators. See example 9.3b page 64.

Reduce dependence of induction variable. If the latency of calculating an induction
variable from the value in the previous iteration is so long that it becomes a
bottleneck then it may be possible to solve this problem by unrolling by r and
calculate each value of the induction variable from the value that is r places behind
in the sequence.

Complete unrolling. A loop is completely unrolled when r = n. This eliminates the
loop overhead completely. Every expression that is a function of the loop counter
can be replaced by constants. Every branch that depends only on the loop counter
can be eliminated. See page 109 for examples.

There is a problem with loop unrolling when the repeat count n is not divisible by the unroll
factor r. There will be a remainder of n modulo r extra calculations that are not done inside
the loop. These extra calculations have to be done either before or after the main loop.

It can be quite tricky to get the extra calculations right when the repeat count is not divisible
by the unroll factor; and it gets particularly tricky if we are using a negative index as in
example 12.6d and e. The following example shows the DAXPY algorithm again, this time
with single precision and unrolled by 4. In this example n is a variable which may or may not
be divisible by 4. The arrays X and Y must be aligned by 16. (The optimization that was
specific to the PM processor has been omitted for the sake of clarity).

Exanple 12.7. Unrolled Loop of DAXPY, single precision

.data
align 16
SignBitS DD 80000000H ; dword with sign bit set
. code
nov eax, n ; Number of cal cul ations, n
sub eax, 4 ;N - 4
| ea esi, [X + eax*4] ; Point to X[n-4]
| ea edi, [Y + eax*4] ; Point to Y[n-4]
novss xm2, DA ; Load DA
xorps xm2, SignBitS ; Change sign
shuf ps xm®2, xmm2, 0 ; Get -DAinto all four dwords of xmm®
neg eax 7 -(n-4)
ig L2 ; Skip main loop if n< 4
L1: Main | oop rolled out by 4

100

novaps xnmil, [esi+eax*4] ; Load 4 values from X

mul ps xnml, xm? ; Multiply with -DA

addps xmmil, [edi +eax*4] ; Add 4 values fromyY

novaps [edi +eax* 4], xmil ; Store 4 results inY

add eax, 4 ;i += 4

jle L1 ; Loop as long as <=0
L2: ; Check for remaining cal cul ations

sub eax, 4 ; = -remai nder

j ns L4 ; Skip extra loop if remainder = 0
L3: ; Extra loop for up to 3 remaining cal cul ations

novss xmml, [esi+eax*4+16] ; Load 1 value from X

mul ss xnml, xm® ; Multiply with -DA

addss xmml, [edi +eax*4+16] ; Add 1 value fromY

novss [edi +eax*4+16],xnmL ; Store 1 result in Y

add eax, 1 ;oo += 1

js L3 ; Loop as long as negative

L4:

An alternative solution for an unrolled loop that does calculations on arrays is to extend the
arrays with up to r-1 unused spaces and rounding up the repeat count n to the nearest
multiple of the unroll factor r. This eliminates the need for calculating the remainder (n mod
r) and for the extra loop for the remaining calculations. The unused array elements must be
initialized to zero or some other valid floating point value in order to avoid denormal
numbers, NAN, overflow, underflow, or any other condition that can slow down the floating
point calculations. If the arrays are of integer type then the only condition you have to avoid
is division by zero.

Loop unrolling should only be used when there is a reason to do so and a significant gain in
speed can be obtained. Excessive loop unrolling should be avoided. The disadvantages of
loop unrolling are:

* The code becomes bigger and takes more space in the code cache. This can cause
code cache misses that cost more than what is gained by the unrolling. Note that the
code cache misses are not detected when the loop is tested in isolation.

» The Core2 and Nehalem processors perform much better on loops that are no
bigger than 64 bytes of code. Loop unrolling will decrease performance on the Core2
if it makes the loop bigger than 64 bytes. (See manual 3: "The microarchitecture of
Intel, AMD and VIA CPUs".)

« The Sandy Bridge processor has a pop cache of limited size. This pop cache is so
valuable that its use should be economized. Loop unrolling is likely to increase the
number of pop cache misses elsewhere in the code.

« The need to do extra calculations outside the unrolled loop in case n is not divisible
by r makes the code more complicated and clumsy and increases the number of
branches.

« The unrolled loop may need more registers, e.g. for multiple accumulators.

12.11 Optimize caching

Memory access is likely to take more time than anything else in a loop that accesses
uncached memory. Data should be held contiguous if possible and accessed sequentially,
as explained in chapter 11 page 80.

101

The number of arrays accessed in a loop should not exceed the number of read/write
buffers in the microprocessor. One way of reducing the number of data streams is to
combine multiple arrays into an array of structures so that the multiple data streams are
interleaved into a single stream.

Some microprocessors have advanced data prefetching mechanisms. These mechanisms
can detect regularities in the data access pattern such as accessing data with a particular
stride. It is recommended to take advantage of such prefetching mechanisms by keeping
the number of different data streams at a minimum and keeping the access stride constant if
possible. Automatic data prefetching often works better than explicit data prefetching when
the data access pattern is sufficiently regular.

Explicit prefetching of data with the pr ef et ch instructions may be necessary in cases where
the data access pattern is too irregular to be predicted by the automatic prefetch
mechanisms. A good deal of experimentation is often needed to find the optimal prefetching
strategy for a program that accesses data in an irregular manner.

It is possible to put the data prefetching into a separate thread if the system has multiple
CPU cores. The Intel C++ compiler has a feature for doing this.

Data access with a stride that is a high power of 2 is likely to cause cache line contentions.
This can be avoided by changing the stride or by loop blocking. See the chapter on
optimizing memory access in manual 1: "Optimizing software in C++" for details.

The non-temporal write instructions are useful for writing to uncached memory that is
unlikely to be accessed again soon. You may use vector instructions in order to minimize
the number of non-temporal write instructions.

12.12 Parallelization

The most important way of improving the performance of CPU-intensive code is to do things
in parallel. The main methods of doing things in parallel are:

« Improve the possibilities of the CPU to do out-of-order execution. This is done by
breaking long dependency chains (see page 64) and distributing pops evenly
between the different execution units or execution ports (see page 93).

e Use vector instructions. See chapter 13 page 111.
» Use multiple threads. See chapter 14 page 133.

Loop-carried dependency chains can be broken by using multiple accumulators, as
explained on page 64. The optimal number of accumulators if the CPU has nothing else to
do is the latency of the most critical instruction in the dependency chain divided by the
reciprocal throughput for that instruction. For example, the latency of floating point addition
on an AMD processor is 4 clock cycles and the reciprocal throughput is 1. This means that
the optimal number of accumulators is 4. Example 12.8b below shows a loop that adds
numbers with four floating point registers as accumulators.

/1 Exanple 12.8a, Loop-carried dependency chain
/1 (Sanme as exanple 9.3a page 64)

double list[100], sum= O.;

for (int i =0; i < 100; i++) sum+= list[i];

An implementation with 4 floating point registers as accumulators looks like this:

Exanpl e 12.8b, Four floating point accumul ators
| ea esi, list ; Pointer to |ist

102

fld gword ptr [esi] ; accuml = |ist[O0]

fld gword ptr [esi+8] ; accun? = list[1]

fld gword ptr [esi+16] ; accunB = |ist][2]

fld gword ptr [esi+24] ; accund = |ist][3]

fxch st(3) ; CGet accunl to top

add esi, 800 ; Point to end of list

nov eax, 32-800 ; Index to list[4] fromend of |ist
L1:

fadd qword ptr [esi+eax] ; Add list[i]

fxch st(1) ; Swap accumnul ators

fadd qword ptr [esi+eax+8] ; Add list[i+1]

fxch st(2) ; Swap accunul ators

fadd qword ptr [esi+eax+16] ; Add list[i+2]

fxch st(3) ; Swap accunul ators

add eax, 24 i += 3

js L1 ; Loop

faddp st(1), st(0) ; Add two accunul ators toget her

fxch st(1) ; Swap accumnul ators

faddp st(2), st(0) ; Add the two other accunul ators

faddp st(1), st(0) ; Add these suns

fstp qword ptr [sum ; Store the result

In example 12.8b, | have loaded the four accumulators with the first four values from | i st .
Then the number of additions to do in the loop happens to be divisible by the rollout factor,
which is 3. The funny thing about using floating point registers as accumulators is that the
number of accumulators is equal to the rollout factor plus one. This is a consequence of the
way the f xch instructions are used for swapping the accumulators. You have to play
computer and follow the position of each accumulator on the floating point register stack to
verify that the four accumulators are actually rotated one place after each iteration of the
loop so that each accumulator is used for every fourth addition despite the fact that the loop
is only rolled out by three.

The loop in example 12.8b takes 1 clock cycle per addition, which is the maximum
throughput of the floating point adder. The latency of 4 clock cycles for floating point
addition is taken care of by using four accumulators. The f xch instructions have zero
latency because they are translated to register renaming on most Intel, AMD and VIA
processors (except on Intel Atom).

The f xch instructions can be avoided on processors with the SSE2 instruction set by using
XMM registers instead of floating point stack registers as shown in example 12.8c. The
latency of floating point vector addition is 4 on an AMD and the reciprocal throughput is 2 so
the optimal number of accumulators is 2 vector registers.

Exampl e 12.8c, Two XMM vector accunul ators

| ea esi, list ; list nmust be aligned by 16

movapd xmm0, [esi] ;o list[0], list[1]

novapd xmil, [esi+16] ;o list[2], list][3]

add esi, 800 ; Point to end of Iist

nov eax, 32-800 ; Index to list[4] fromend of |ist
L1:

addpd xnmD, [esi +eax] ; Add list[i], [ist[i+1]

addpd xml, [esi+eax+16] ;o Add list[i+2], list[i+3]

add eax, 32 ;i += 4

js L1 ; Loop

addpd Xm0, xnmil ; Add the two accunul ators together

nmovhl ps xmml, xmD ; There is no nmovhl pd instruction

addsd Xm0, xmml ; Add the two vector elenents

novsd [sun], xnmD ; Store the result

103

Example 12.8b and 12.8c are exactly equally fast on an AMD processor because both are
limited by the throughput of the floating point adder.

Example 12.8c is faster than 12.8b on an Intel Core2 processor because this processor has
a 128 bits wide floating point adder that can handle a whole vector in one operation.

12.13 Analyzing dependences

A loop may have several interlocked dependency chains. Such complex cases require a
careful analysis.

The next example is a Taylor expansion. As you probably know, many functions can be
approximated by a Taylor polynomial of the form

1‘(x):Zn:cixi

Each power X is conveniently calculated by multiplying the preceding power X with x. The
coefficients c; are stored in a table.

; Exanpl e 12.9a. Tayl or expansion

.data
align 16
one dq 1.0 ; 1.0
X dq ? ;X
coef f dq cO0, cl1, c2, ... ; Taylor coefficients
coeff _end | abel gword ; end of coeff. |ist
. code
novsd xmmR, |[Xx] ;o XmmR = X
novsd xnmil, [one] ;oXmml = xA
xorps xmD, xnmD ; xmmD = sum init. to O
nov eax, offset coeff ; point to c[i]
L1: movsd xmmB, [eax] ;oc[i]
mul sd xmmB, xml ;oc[i] * x»
mul sd xnml, xm® ;XM +1)
addsd xmmD, xm8B ;osum+= c[i] * x°
add eax, 8 ; point to c[i+1]
cnp eax, offset coeff_end ; stop at end of I|ist
ib L1 ; 1l oop

(If your assembler confuses the novsd instruction with the string instruction of the same
name, then code itas DB OF2H / novups).

And now to the analysis. The list of coefficients is so short that we can expect it to stay
cached.

In order to check whether latencies are important, we have to look at the dependences in
this code. The dependences are shown in figure 12.1.

104

x" mul

add J{i

mul

mul |&x

add J

mul
()

mul

¥
ade”

1 mul
gl

Figure 12.1: Dependences in Taylor expansion of example 12.9.

There are two continued dependency chains, one for calculating X and one for calculating
the sum. The latency of the nmul sd instruction is longer than the addsd on Intel processors.
The vertical multiplication chain is therefore more critical than the addition chain. The
additions have to wait for ¢ix, which come one multiplication latency after X, and later than
the preceding additions. If nothing else limits the performance, then we can expect this code
to take one multiplication latency per iteration, which is 4 - 7 clock cycles, depending on the
processor.

Throughput is not a limiting factor because the throughput of the multiplication unit is one
multiplication per clock cycle on processors with a 128 bit execution unit.

Measuring the time of example 12.9a, we find that the loop takes at least one clock cycle
more than the multiplication latency. The explanation is as follows: Both multiplications have
to wait for the value of X in xmi from the preceding iteration. Thus, both multiplications are
ready to start at the same time. We would like the vertical multiplication in the ladder of
figure 12.1 to start first, because it is part of the most critical dependency chain. But the
microprocessor sees no reason to swap the order of the two multiplications, so the
horizontal multiplication on figure 12.1 starts first. The vertical multiplication is delayed for
one clock cycles, which is the reciprocal throughput of the floating point multiplication unit.
The problem can be solved by putting the horizontal multiplication in figure 12.1 after the
vertical multiplication:

Exanpl e 12.9b. Tayl or expansi on
movsd xm2, [X] ;o xmi
movsd xmmil, [one] ;o xmil

105

xorps xmD, xnmD ; xqmD = sum initialize to O

nov eax, offset coeff ; point to c[i]
L1: movapd xmB, xnml ; copy x”°
mul sd xnml, xm® ;XN +1) (vertical multipl.)
mul sd xmmB, [eax] ; c[i]l*x”i (horizontal multipl.)
add eax, 8 ; point to c[i+1]
cnp eax, offset coeff_end ; stop at end of I|ist
addsd xmD, xmB ;osum += c[i] * x»
ib L1 ; 1 oop

Here we need an extra instruction for copying x' (movapd xmm8, xmmtl) so that we can make
the vertical multiplication before the horizontal multiplication. This makes the execution one
clock cycle faster per iteration of the loop.

We are still using only the lower part of the xmmregisters. There is more to gain by doing two
multiplications simultaneously and taking two steps in the Taylor expansion at a time. The
trick is to calculate each value of x' from x"? by multiplying with x*:

; Exanple 12.9c. Tayl or expansi on, doubl e steps

novsd xmmd, [X] DX
mul sd xnmd, xmmid ;o XN2
nmovl hps xm#d, xmd ;o XN2, xN2
novapd xmil, xmmord ptr [one] ; xnmil(L)=1.0, xnmil(H)=x
XO0r ps xm©O, xmrD ; xmmD = sum init. to O
nov eax, offset coeff ; point to c[i]
L1: movapd xmm8, xmmil ;o copy XN, xM(i+1)
mul pd xmml, x4 ;o XM +2), xM(i +3)
mul pd xmB, [eax] poc[i]*x™i, c[i+1]*x"(i+1)
addpd xmoO, xmr8 ;osum+= c[i] * x°
add eax, 16 ; point to c[i+2]
cnp eax, offset coeff_end ; stop at end of I|ist
jb L1 ; loop
haddpd xmmD, xmD ; join the two parts of sum

The speed is now doubled. The loop still takes the multiplication latency per iteration, but
the number of iterations is halved. The multiplication latency is 4-5 clock cycles depending
on the processor. Doing two vector multiplies per iteration, we are using only 40 or 50% of
the maximum multiplier throughput. This means that there is more to gain by further
parallelization. We can do this by taking four Taylor steps at a time and calculating each
value of x' from x™* by multiplying with x*:

Exanmpl e 12.9d. Tayl or expansi on, quadruple steps

novsd xmmd, [X] DX

nmul sd xmmd, xmmd TOXN2

novl hps xm4, xmd ;OXN2, xN2

nmovapd xm2, xmmaord ptr [one] ; xnm2(L)=1.0, xnm2(H)=x
movapd xmil, xmP ;oxmml = 1, X

nmul pd Xxme, xm# ;oXmmR = x"2, x"3

nmul pd Xmy, xmm# ;oXmmd = x4, x4

XO0r ps xmb, xmrb ; Xmmb = sum init. to O
XOor ps X6, Xnmmb ; Xpm6 = sum init. to O
nov eax, offset coeff ; point to c[i]

L1: novapd xmmB, xml ;copy XN, xM(i+1)
nmovapd xmmD, xm® ;o copy xM(i+2), xM(i+3)
mul pd xmil, xmmi ;o XN(i+4), xM(i +5)
mul pd xR, xmi ;o XM +6), xXM(i0+7)
mul pd xmmB, xmmaord ptr [eax] ; term(i), tern(i+1)
mul pd xmO, xmmword ptr [eax+16] ; term(i+2), term(i+3)
addpd xmb, xmmB ; add to sum
addpd xn6, xnmmD ; add to sum
add eax, 32 ; point to c[i+2]
cnp eax, offset coeff_end ; stop at end of I|ist

106

ib L1 ; loop
addpd xnmb, xnmmb ; join two accumul ators
haddpd xmb, xmmb ; final sumin xnmb

We are using two registers, xnmiL and xmm®2, for keeping four consecutive powers of x in
example 12.9d in order to split the vertical dependency chain in figure 12.1 into four parallel
chains. Each power X is calculated from x™. Similarly, we are using two accumulators for
the sum, xnmb and xmm® in order to split the addition chain into four parallel chains. The four
sums are added together after the loop. A measurement on a Core 2 shows 5.04 clock
cycles per iteration or 1.26 clock cycle per Taylor term for example 12.9d. This is close to
the expectation of 5 clock cycles per iteration as determined by the multiplication latency.
This solution uses 80% of the maximum throughput of the multiplier which is a very
satisfactory result. There is hardly anything to gain by unrolling further. The vector addition
and other instructions do not add to the execution time because they do not need to use the
same execution units as the multiplications. Instruction fetch and decoding is not a
bottleneck in this case.

The throughput can be improved further on processors supporting the AVX instruction set
with 256-bit YMM registers:

Exanmpl e 12.9e. Tayl or expansi on using AVX

vimovddup xm®2, [X] ;OX, X
vmul pd xmb, xmm2, xmmP OXN2, xN2
vul pd xmd, xnmb, xnmmb i XN, XM
vnovsd xm®2, [one] ;1
vimovhpd xm2, xm2, [X] N D ¢
vimul pd xmD, xnmm2, xmmb ;o XN2, x"3

vinsertf128 ym®2, ym®2, xm0, 1 ; 1, x, x"2, x"3
vinsertf128 ym4, ymd, xmmd, 1 ; x™4, x™4, xM, xM

vmul pd ymm8, ym2, ynmi i XM, xM5, x"6, x"7
vimul pd ynmd, ymmd, ym#d ; X8, x"8, x"8, x"8
vxor ps xmD, xmmD ; sunD = 0
vxor ps xmmi, xnmi ;o osunl = 0
| ea rax, [coeff_end] ; point to end of coeff[i]
nov rcx, -n ; counter
jmp L2 ; jump into | oop
align 32 ; 1 oop
L1: vmul pd ymm2, ym®2, ynmd ; multiply powers of x by x"8
vmul pd ymm8, ymB, ynmi ; multiply powers of x by x"8
L2: vnul pd ymmb, ymm®2, [rax+rcx] ; first four terns
vaddpd ymD, ymm0, ymmb ; sumD
vmul pd ymmb, ymmB, [rax+rcx+32] ; next four terns
vaddpd ymil, ynmil, ynmb ;osuml
add rcx, 64
il L1
; make total sum
vaddpd ym®D, ynm0D, ynmil ; join two accumul ators
vextractf128 xmmb, ymm0O, 1 ; get high part
vaddpd xmmD, xnm0, xmmb ; add high and | ow part
vhaddpd xmm0, xmmD, xnmD ; final sumin xnmD
vzeroupper ; 1 f subsequent code is non-VEX

Example 12.9e calculates 8 terms for each iteration. The execution time was measured to
5.5 clock cycles per iteration on a Sandy Bridge, which is close to the theoretical minimum
of 5 clock cycles as determined by the multiplication latency.

The time spent outside the loop is of course higher in example 12.9d and e than in the
previous examples, but the performance gain is still very significant even for a small number
of iterations. A little final twist is to put the first coefficient into the accumulator before the

107

loop and start with x' rather than x°. A better precision is obtained by adding the first term
last, but at the cost of an extra addition latency.

It is common to stop a Taylor expansion when the terms become negligible. However, it
may be better to always include the worst case maximum number of terms in order to avoid
the floating point comparisons needed for checking the stop condition. A constant repetition
count will also prevent misprediction of the loop exit. The cost of calculating more terms
than needed is actually quite small in the last two examples that use only 1.26 or 0.69 clock
cycles, respectively, per term. Set the nxcsr register to "Flush to zero" mode in order to
avoid the possible penalty of underflows when doing more iterations than necessary.

12.14 Loops on processors without out-of-order execution

The P1 and PMMX processors have no capabilities for out-of-order execution. These
processors are of course obsolete today, but the principles described here may be applied
to smaller embedded processors.

| have chosen the simple example of a procedure that reads integers from an array,
changes the sign of each integer, and stores the results in another array. A C++ language
code for this procedure would be:

/1 Exanple 12.10a. Loop to change sign
void ChangeSign (int * A int * B, int N {
for (int i =0; i <N i++) Bli] =-Ai];
}
An assembly implementation optimized for P1 may look like this:

Exanpl e 12. 10b

nov esi, [A]
nov eax, [N
nov edi, [B]
xor ecx, ecx
| ea esi, [esi+4*eax] ; point to end of array a
sub ecx, eax ;o -n
| ea edi, [edi+4*eax] ; point to end of array b
jz short L3
xor ebx, ebx ; start first calculation
nov eax, [esi+4*ecx]
i nc ecx
jz short L2

L1: sub ebx, eax ;o
nov eax, [esi+4*ecx] ; vV (pairs)
nov [edi +4*ecx-4], ebx ;u
i nc ecx ;v (pairs)
nov ebx, 0 ;u
jnz L1 ; vV (pairs)

L2: sub ebx, eax ; end |ast calculation
nov [edi +4*ecx-4], ebx

L3:

Here the iterations are overlapped in order to improve pairing opportunities. We begin
reading the second value before we have stored the first one. The nov ebx, 0 instruction
has been put in between i nc ecx and jnz L1, notto improve pairing, but to avoid the
AGI stall that would result from using ecx as address index in the first instruction pair after it
has been incremented.

Loops with floating point operations are somewhat different because the floating point
instructions are pipelined and overlapping rather than pairing. Consider the DAXPY loop of
example 12.6 page 93. An optimal solution for P1 is as follows:

108

; Exanple 12.11. DAXPY optimzed for P1 and PMWX

nov eax, [n] ; nunber of elenents
nov esi, [X ; pointer to X

nov edi, [Y] ; pointer to Y

xor ecx, ecx

| ea esi, [esi+8*eax] ; point to end of X
sub ecx, eax ;o-n

| ea edi, [edi+8*eax] ; point to end of Y
jz short L3 ; test for n =0
fld gword ptr [DA] ; start first calc.
frul qgword ptr [esi+8*ecx] ; DA * X[O]

jmp short L2 ; junp into | oop

L1: fld gword ptr [DA
frmul qword ptr [esi+8*ecx] ; DA * Xi]
fxch ; get old result
fstp qword ptr [edi+8*ecx- 8] ; store Y[i]

L2: fsubr gword ptr [edi +8*ecx] ; subtract from Y[i]
i nc ecx ; increment index
jnz L1 ; loop
fstp qword ptr [edi+8*ecx- 8] ; store last result

L3:

Here we are using the loop counter as array index and counting through negative values up
to zero.

Each operation begins before the previous one is finished, in order to improve calculation
overlaps. Processors with out-of-order execution will do this automatically, but for
processors with no out-of-order capabilities we have to do this overlapping explicitly.

The interleaving of floating point operations works perfectly here: The 2 clock stall between
FMUL and FSUBR s filled with the FSTP of the previous result. The 3 clock stall between
FSUBR and FSTP is filled with the loop overhead and the first two instructions of the next
operation. An address generation interlock (AGI) stall has been avoided by reading the only
parameter that doesn't depend on the index counter in the first clock cycle after the index
has been incremented.

This solution takes 6 clock cycles per iteration, which is better than unrolled solutions
published elsewhere.

12.15 Macro loops

If the repetition count for a loop is small and constant, then it is possible to unroll the loop
completely. The advantage of this is that calculations that depend only on the loop counter
can be done at assembly time rather than at execution time. The disadvantage is, of course,
that it takes up more space in the code cache if the repeat count is high.

The MASM syntax includes a powerful macro language with full support of meta-
programming, which can be quite useful. Other assemblers have similar capabilities, but the
syntax is different.

If, for example, we need a list of square numbers, then the C++ code may look like this:
/1 Exanple 12.12a. Loop to nmake list of squares
i nt squares[10];
for (int i =0; i < 10; i++) squares[i] =1i*i;

The same list can be generated by a macro loop in MASM language:

; Exanple 12.12b. Macro | oop to produce data
109

. DATA

squares LABEL DWORD ; label at start of array
I =0 ; temporary counter
REPT 10 ; repeat 10 tines

DD * ; define one array el enent

I
I ; increment counter
ENDM ; end of REPT | oop

Here, | is a preprocessing variable. The | loop is run at assembly time, not at execution
time. The variable | and the statement| = | + 1 never make it into the final code, and
hence take no time to execute. In fact, example 12.12b generates no executable code, only
data. The macro preprocessor will translate the above code to:

; Exanple 12.12c. Resuls of macro | oop expansion
squares LABEL DWORD ; label at start of array

J585888888

Macro loops are also useful for generating code. The next example calculates X", where x is
a floating point number and n is a positive integer. This is done most efficiently by
repeatedly squaring x and multiplying together the factors that correspond to the binary
digits in n. The algorithm can be expressed by the C++ code:

/1 Exanple 12.13a. Calculate pow(x,n) where n is a positive integer
doubl e x, xp, power;
unsigned int n, i;

Xp = x; power = 1.0;

for (i =n; i 1'=0; i >>=1) {
if (i & 1) power *= xp;
Xp *= xp;

}

If nis known at assembly time, then the power function can be implemented using the
following macro loop:

; Exanple 12.13b.
; This macro will raise a double-precision float in X
; to the power of N, where Nis a positive integer constant.
; The result is returned in Y. X and Y nust be two different
; XMM registers. X is not preserved.

(Only for processors wth SSE2)
INTPCMER MACRO X, Y, N

LOCAL |, YUSED ; define local identifiers
I =N ; | used for shifting N
YUSED = 0 ; remenber if Y contains valid data
REPT 32 ; maxi mum repeat count is 32
IF 1 AND 1 ; test bit O
| F YUSED ; If Y already contains data
mul sd Y, X ; multiply Y with a power of X
ELSE ; If thisis first tine Y is used:
nmovsd Y, X ; copy data to Y
YUSED = 1 ; remenber that Y now contains data
ENDI F ;. end of |IF YUSED
ENDI F ; end of IF 1 AND 1
I =1 SHR 1 ; shift right | one place

110

IF1 EQO ; stop when | =0

EXI T™M ; exit REPT 32 loop prematurely
ENDI F ; end of IF1 EQO
mul sd X, X ; square X
ENDM ; end of REPT 32 | oop
ENDM ; end of | NTPOAER macro definition

This macro generates the minimum number of instructions needed to do the job. There is no
loop overhead, prolog or epilog in the final code. And, most importantly, no branches. All
branches have been resolved by the macro preprocessor. To calculate xnm0 to the power of
12, you write:

; Exanple 12.13c. Macro invocation
| NTPONER xmmD, xnmil, 12

This will be expanded to:

Exanmpl e 12.13d. Result of nmcro expansion

mul sd xmrD, xmD ;OXN2

nmul sd Xm0, xmD DAY

novsd xml, xmmD ;. save x"4

mul sd xmrD, xmD . X8

mul sd xmml, xmD ;XM * xN8 = xM12

This even has fewer instructions than an optimized assembly loop without unrolling. The
macro can also work on vectors when nul sd is replaced by nul pd and novsd is replaced by
nmovapd.

13 Vector programming

Since there are technological limits to the maximum clock frequency of microprocessors, the
trend goes towards increasing processor throughput by handling multiple data in parallel.

When optimizing code, it is important to consider if there are data that can be handled in
parallel. The principle of Single-Instruction-Multiple-Data (SIMD) programming is that a
vector or set of data are packed together in one large register and handled together in one
operation. There are many hundred different SIMD instructions available. These instructions
are listed in "IA-32 Intel Architecture Software Developer’'s Manual" vol. 2A and 2B, and in
"AMDG64 Architecture Programmer’s Manual", vol. 4.

Multiple data can be packed into 64-bit MMX registers, 128-bit XMM registers or 256-bit
YMM registers in the following ways:

111

data type data per pack register size instruction set
8-bit integer 8 64 bit (MMX) MMX
16-bit integer 4 64 bit (MMX) MMX
32-bit integer 2 64 bit (MMX) MMX
64-bit integer 1 64 bit (MMX) SSE2
32-bit float 2 64 bit (MMX) | 3DNow (AMD only)
8-bit integer 16 128 bit (XMM) SSE?2
16-bit integer 8 128 bit (XMM) SSE2
32-bit integer 4 128 bit (XMM) SSE2
64-bit integer 2 128 bit (XMM) SSE2
32-bit float 4 128 bit (XMM) SSE
64-bit float 2 128 bit (XMM) SSE2
32-bit float 8 256 bit (YMM) AVX
64-bit float 4 256 bit (YMM) AVX
Table 13.1. Vector types

The 64- and 128-bit packing modes are available on all newer microprocessors from Intel,
AMD and VIA, except for the 3DNow mode, which is available only on AMD processors.
The 256-bit vectors are available in Intel Sandy Bridge and AMD Bulldozer. Whether the
different instruction sets are supported on a particular microprocessor can be determined
with the CPUI D instruction, as explained on page 134. The 64-bit MMX registers cannot be
used together with the floating point registers. The XMM and YMM registers can only be
used if supported by the operating system. See page 135 for how to check if the use of
XMM and YMM registers is enabled by the operating system.

It is advantageous to choose the smallest data size that fits the purpose in order to pack as
many data as possible into one vector register. Mathematical computations may require
double precision (64-bit) floats in order to avoid loss of precision in the intermediate
calculations, even if single precision is sufficient for the final result.

Before you choose to use vector instructions, you have to consider whether the resulting
code will be faster than the simple instructions without vectors. With vector code, you may
spend more instructions on trivial things such as moving data into the right positions in the
registers and emulating conditional moves, than on the actual calculations. Example 13.5
below is an example of this. Vector instructions are relatively slow on older processors, but
the newest processors can do a vector calculation just as fast as a scalar (single)
calculation in many cases.

For floating point calculations, it is often advantageous to use XMM registers rather than
x87 registers, even if there are no opportunities for handling data in parallel. The XMM
registers are handled in a more straightforward way than the old x87 register stack.

Memory operands for XMM instructions have to be aligned by 16. Memory operands for
YMM instructions are preferably aligned by 32, but not necessarily. See page 85 for how to
align data in memory.

Exanpl e 13. 1la. Adding two arrays using vectors

; float a[100], b[100], c[100];

; for (int i =0; i <100; i++) a[i] = Db[i] + c[i];
Assume that a, b and c are aligned by 16

xor ecx, ecx Loop counter

L: nmovaps xmD, b[ecx] Load 4 elenents fromb
addps xmmD, c[ecx] ; Add 4 elenents fromc
novaps alecx], xnmmD ; Store result in a
add ecx, 16 4 elements * 4 bytes = 16
cnp ecx, 400 ; 100 elements * 4 bytes = 400
ib L ; Loop

112

13.1 Conditional moves in SIMD registers
Consider this C++ code which finds the biggest values in four pairs of values:

/1 Exanple 13.2a. Loop to find maxi mnuns
float a[4], b[4], c[4];
for (int i =0; i < 4; i++) {
c[i] = a[i] > Db[i] ? a[i] : b[i];
}

If we want to implement this code with XMM registers then we cannot use a conditional
jump for the branch inside the loop because the branch condition is not the same for all four
elements. Fortunately, there is a maximum instruction that does the same:

; Exanple 13.2b. Maxi numin XM

novaps xnm0, [a] ; Load a vector
maxps xnm0, [Db] ; max(a, b)
novaps [c], xmmD ; c=a>b?a: b

Minimum and maximum vector instructions exist for single and double precision floats and
for 8-bit and 16-bit integers. The absolute value of floating point vector elements is
calculated by AND'ing out the sign bit, as shown in example 13.8 page 122. Instructions for
the absolute value of integer vector elements exist in the "Supplementary SSE3" instruction
set. The integer saturated addition vector instructions (e.g. PADDSW can also be used for
finding maximum or minimum or for limiting values to a specific range.

These methods are not very general, however. The most general way of doing conditional
moves in vector registers is to use Boolean vector instructions. The following example is a
modification of the above example where we cannot use the MAXPS instruction:

/1 Exanmple 13.3a. Branch in | oop
float a[4], b[4], c[4], x[4], y[4];
for (int i =0; i < 4; i++) {

cli] =x[i] >y[i] ?a[i] : b[i];
}

The necessary conditional move is done by making a mask that consists of all 1's when the
condition is true and all 0's when the condition is false. a[i] is AND'ed with this mask and
b[i] is AND'ed with the inverted mask:

; Exanple 13.3b. Conditional nove in XMMregisters

novaps xnml, [y] ; Load y vector

cnpl tps xnmil, [Xx] ; Compare with x. xnmml = mask for y < x
novaps xnm0, [a] ; Load a vector

andps Xm0, xnmil ; a AND nask

andnps xmi, [b] ; b AND NOT mask

or ps xnm0, xmml ; (a AND mask) OR (b AND NOT nask)
novaps [c], xmmD ; c=x>y ?2a:b

The vectors that make the condition (x and y in example 13.3b) and the vectors that are
selected (a and b in example 13.3b) need not be the same type. For example, x and y could
be integers. But they should have the same number of elements per vector. If a and b are
doubl e's with two elements per vector, and x and y are 32-bit integers with four elements
per vector, then we have to duplicate each element in x and y in order to get the right size of
the mask (See example 13.5b below).

Note that the AND-NOT instruction (andnps, andnpd, pandn) inverts the destination
operand, not the source operand. This means that it destroys the mask. Therefore we must
have andps before andnps in example 13.3b. If SSE4.1 is supported then we can use the
BLENDVPS instruction instead:

113

; Exanple 13.3c. Conditional nobve in XMMregisters, using SSE4.1

novaps xmD, [y] ; Load y vector

cnpltps xm0, [X] ; Conpare with x. xmD = mask for y < X
novaps xmml, [a] ; Load a vector

bl endvps xnml, [b], xmmD ; Blend a and b

novaps [c], xmmD ; c=x>y ?2a: b

If the mask is needed more than once then it may be more efficient to AND the mask with
an XOR combination of a and b. This is illustrated in the next example which makes a
conditional swapping of a and b:

/1 Exanple 13.4a. Conditional swapping in |oop
float a[4], b[4], x[4], y[4], tenp;

for (int i =0; i < 4; i++) {
bt (x[i] > y[i]) {
temp = a[i]; /1 Swap a[i] and b[i] if x[i] > y[i]
a[i] =Db[i];
b[i] = tenp;
}
}

And now the assembly code using XMM vectors:

; Exanple 13.4b. Conditional swapping in XMMregisters, SSE

novaps xm2, [y] ; Load y vector

cnpltps xm®, [X] ; Conpare with x. xm2 = mask for y < X
novaps xmD, [a] ; Load a vector

novaps xmm, [b] ; Load b vector

XOr ps Xm0, xnmil ; a XOR b

andps xR, xmmD ; (a XOR b) AND nask

XOor ps xmml, xnmmP ; b XOR ((a XOR b) AND nask)

XOr ps xmR, [a] ; a XOR ((a XOR b) AND nask)

novaps [b], xmil ;o (x[i] > yl[il) 2 a[i] : bli]

novaps [a], xm® ;o (X[i] > y[i]) ? b[i] : a[i]

The xorps xmmD, xm instruction generates a pattern of the bits that differ between a and
b. This bit pattern is AND'ed with the mask so that xnm2 contains the bits that need to be
changed if a and b should be swapped, and zeroes if they should not be swapped. The last
two xor ps instructions flip the bits that have to be changed if a and b should be swapped
and leave the values unchanged if not.

The mask used for conditional moves can also be generated by copying the sign bit into all
bit positions using the arithmetic shift right instruction psr ad. This is illustrated in the next
example where vector elements are raised to different integer powers. We are using the
method in example 12.13a page 110 for calculating powers.

/1 Exanple 13.5a. Raise vector elements to different integer powers
double x[2], y[2]; wunsigned int n[2];

for (int i =0; i < 2; i++) {

} y[i] = pow(x[i],n[i]);

If the elements of n are equal then the simplest solution is to use a branch. But if the powers
are different then we have to use conditional moves:

Exanmpl e 13.5b. Raise vector to power, using integer nask, SSE2

.data ; Data segnent
align 16 ; Must be aligned
ONE DQ 1.0, 1.0 ; Make constant 1.0
X DQ 2?2, ? ;o X[0], Xx[1]

114

Y DQ ?, ? ; y[O], y[1]
DD ?

N . ? ; n[0], n[1]
. code
; register use:
;o xmmD = xp
xml = power
;X = (i0 and i1 each stored twi ce as DWORD i nt egers)
;o xqmB = 1.0 if not(i & 1)
poxmmd = xp i f (i & 1)
novq xnm2, [N ; Load nO, nl
punpckl dg xm®2, xmP ; Copy to get nO, nO, nl, nl
novapd xmm0, [X] ; Load x0, x1
novapd xmml, [one] ; power initialized to 1.0
nov eax, [N ; n0
or eax, [N+4] ; N0 OR nl to get highest significant bit
xor ecx, ecx ; 0if nO and nl are both zero
bsr ecx, eax ; Conpute repeat count for max(n0, nl)
L1: rovdga X8, xmP ; Copy i
psl|d xmB, 31 ; Cet least significant bit of
psrad xmB, 31 ; Copy to all bit positions to make mask
psrld xm, 1 co>>= 1
novapd xmmd, xnmmD ; Copy of xp
andpd xnmd, xmmB ;o xp if bit =1
andnpd xnmB, [one] ; 1.0 if bit =0
or pd xnmB, xmid ;o (i &1) ?2 xp: 1.0
mul pd xmi, xmr8 ; power *= (i & 1) ? xp: 1.0
mul pd xm©O, xmrD ;OXp *= Xp
sub ecx, 1 ; Loop counter
j ns L1 ; Repeat ecx+1 tines
novapd [Y], xmil ; Store result

The repeat count of the loop is calculated separately outside the loop in order to reduce the
number of instructions inside the loop.

Timing analysis for example 13.5b in P4E: There are four continued dependency chains:
xmm0: 7 clocks, xmmi: 7 clocks, xnm2: 4 clocks, ecx: 1 clock. Throughput for the different
execution units: MMX-SHIFT: 3 pops, 6 clocks. MMX-ALU: 3 pops, 6 clocks. FP-MUL: 2
pops, 4 clocks. Throughput for port 1: 8 pops, 8 clocks. Thus, the loop appears to be limited
by port 1 throughput. The best timing we can hope for is 8 clocks per iteration which is the
number of pops that must go to port 1. However, three of the continued dependency chains
are interconnected by two broken, but quite long, dependency chains involving xrm8 and
xnmm4, which take 23 and 19 clocks, respectively. This tends to hinder the optimal reordering
of yops. The measured time is approximately 10 pops per iteration. This timing actually
requires a quite impressive reordering capability, considering that several iterations must be
overlapped and several dependency chains interwoven in order to satisfy the restrictions on
all ports and execution units.

Conditional moves in general purpose registers using CMOvVcc and floating point registers
using FCMOvcce are no faster than in XMM registers.

On Intel and AMD processors with the SSE4.1 instruction set we can use the PBLENDVB,
BLENDVPS or BLENDVPD instructions instead of the AND/OR operations as in example 13.3c
above. On future AMD processors with the XOP instruction set we may alternatively use the
VPCMOV instruction in the same way.

115

13.2 Using vector instructions with other types of data than they are intended
for

Most XMM and YMM instructions are 'typed' in the sense that they are intended for a
particular type of data. For example, it doesn't make sense to use an instruction for adding
integers on floating point data. But instructions that only move data around will work with
any type of data even though they are intended for one particular type of data. This can be
useful if an equivalent instruction doesn't exist for the type of data you have or if an
instruction for another type of data is more efficient.

All XMM and YMM instructions that move, shuffle, blend or shift data as well as the Boolean
instructions can be used for other types of data than they are intended for. But instructions
that do any kind of arithmetic operation, type conversion or precision conversion can only be
used for the type of data it is intended for. For example, the FLD instruction does more than
move floating point data, it also converts to a different precision. If you try to use FLD and
FSTP for moving integer data then you may get exceptions for denormal operands in case
the integer data do not happen to represent a normal floating point number. The instruction
may even change the value of the data in some cases. But the instruction MOVAPS, which is
also intended for moving floating point data, does not convert precision or anything else. It
just moves the data. Therefore, it is OK to use MOVAPS for moving integer data.

If you are in doubt whether a particular instruction will work with any type of data then check
the software manual from Intel or AMD. If the instruction can generate any kind of "floating
point exception" then it should not be used for any other kind of data than it is intended for.

There is a penalty for using the wrong type of instructions on some processors. This is
because the processor may have different data buses or different execution units for integer
and floating point data. Moving data between the integer and floating point units can take
one or more clock cycles depending on the processor, as listed in table 13.2.

Processor Bypass delay, clock cycles

Intel Core 2 and earlier

Intel Nehalem

Intel Sandy Bridge -1

Intel Atom

NO|IOIN|—

AMD

VIA Nano 2-3

Table 13.2. Data bypass delays between integer and floating point execution units

On Intel Core 2 and earlier Intel processors, some floating point instructions are executed in
the integer units. This includes XMM move instructions, Boolean, and some shuffle and
pack instructions. These instructions have a bypass delay when mixed with instructions that
use the floating point unit. On most other processors, the execution unit used is in
accordance with the instruction name, e.g. MOVAPS XIWML, XM\ uses the floating point unit,
MOVDQA XMML, XM\VR uses the integer unit.

Instructions that read or write memory use a separate unit. The bypass delay from the
memory unit to the floating point unit may be longer than to the integer unit on some
processors, but it doesn't depend on the type of the instruction. Thus, there is no difference
in latency between MOVAPS XMMWD, [MEM and MOVDQA XWMWD, [MEM on current processors,
but it cannot be ruled out that there will be a difference on future processors.

More details about the execution units of the different processors can be found in manual 3

"The microarchitecture of Intel, AMD and VIA CPUs". Manual 4: "Instruction tables" has lists
of all instructions, indicating which execution units they use.

116

Using an instruction of a wrong type can be advantageous in cases where there is no
bypass delay and in cases where throughput is more important than latency. Some cases
are described below.

Using the shortest instruction

The instructions for packed single precision floating point numbers, with names ending in
PS, are one byte shorter than equivalent instructions for double precision or integers. For
example, you may use MOVAPS instead of MOVAPD or MOVDQA for moving data to or from
memory or between registers. A bypass delay occurs in some processors when using
MOVAPS for moving the result of an integer instruction to another register, but not when
moving data to or from memory.

Using the most efficient instruction

There are several different ways of reading an XMM register from unaligned memory. The
typed instructions are MOvDQU, MOVUPD, and MOVUPS. These are all quite inefficient on older
processors. LDDQU is faster on P4AE and PM processors, but not on newer processors. On
some processors, the most efficient way of reading an XMM register from unaligned
memory is to read 64 bits at a time using MOvQ and MOVHPS. Likewise, the fastest way of
writing to unaligned memory may be to use MOVLPS and MOVHPS. See page 123 for more
discussion of unaligned access.

An efficient way of setting a vector register to zero is PXOR XM\VD, XMVD. Many processors
recognize this instruction as being independent of the previous value of XMvD, while not all
processors recognize the same for XORPS and XORPD. The PXOR instruction is therefore
preferred for setting a register to zero.

The integer versions of the Boolean vector instructions (PAND, PANDN, POR, PXOR) can use
more different execution units than the floating point equivalents (ANDPS, etc.) on some AMD
and Intel processors.

Using an instruction that is not available for other types of data

There are many situations where it is advantageous to use an instruction intended for a
different type of data simply because an equivalent instruction doesn't exist for the type of
data you have.

The instructions for single precision float vectors are available in the SSE instruction set,
while the equivalent instructions for double precision and integers require the SSE2
instruction set. Using MOVAPS instead of MOVAPD or MOVDQA for moving data makes the code
compatible with processors that have SSE but not SSE2.

There are many useful instructions for data shuffling and blending that are available for only
one type of data. These instructions can easily be used for other types of data than they are
intended for. The bypass delay, if any, may be less than the cost of alternative solutions.
The data shuffling instructions are listed in the next paragraph.

13.3 Shuffling data

Vectorized code sometimes needs a lot of instructions for swapping and copying vector
elements and putting data into the right positions in the vectors. The need for these extra
instructions reduces the advantage of using vector operations. It may be an advantage to
use a shuffling instruction that is intended for a different type of data than you have, as
explained in the previous paragraph. Some instructions that are useful for data shuffling are
listed below.

117

Moving data between different elements of a register
(Use same register for source and destination)

Instruction Block size, Description Instruction
bits set
PSHUFD 32 Universal shuffle SSE2
PSHUFLW 16 Shuffles low half of register only SSE2
PSHUFHW 16 Shuffles high half of register only SSE2
SHUFPS 32 Shuffle SSE
SHUFPD 64 Shuffle SSE2
PSLLDQ 8 Shifts to a different position and sets the original | SSE2
position to zero
PSHUFB 8 Universal shuffle Suppl. SSE3
PALI GNR 8 Rotate vector of 8 or 16 bytes Suppl. SSE3
Table 13.3. Shuffle instructions
Moving data from one register to different elements of another register
Instruction Block size, Description Instruction
bits set
PSHUFD 32 Universal shuffle SSE2
PSHUFLW 16 Shuffles low half of register only SSE2
PSHUFHW 16 Shuffles high half of register only SSE2
Pl NSRB 8 Insert byte into vector SSEA4.1
Pl NSRW 16 Insert word into vector SSE
Pl NSRD 32 Insert dword into vector SSE4.1
Pl NSRQ 64 Insert gqword into vector SSE4.1
I NSERTPS 32 Insert dword into vector SSE4.1
VPERM LPS 32 Shuffle with variable selector AVX
VPERM LPD 64 Shuffle with variable selector AVX
VPPERM 8 Shuffle with variable selector AMD XOP
Table 13.4. Move-and-shuffle instructions
Combining data from two different sources
Instruction Block size, Description Instruction
bits set
SHUFPS 32 Lower 2 dwords from any position of destination | SSE
higher 2 dwords from any position of source
SHUFPD 64 Low gqword from any position of destination SSE2
high gword from any position of source
MOVLPS/ D 64 Low gqword from memory, SSE/SSE2
high gword unchanged
MOVHPS/ D 64 High qword from memory, SSE/SSE2
low gword unchanged
MOVLHPS 64 Low gword unchanged, SSE
high gword from low of source
MOVHLPS 64 Low qword from high of source, SSE
high gword unchanged
MOVSS 32 Lowest dword from source (register only), SSE
bits 32-127 unchanged
MOVSD 64 Low qword from source (register only), SSE2
high gword unchanged
PUNPCKLBW 8 Low 8 bytes from source and destination SSE2
interleaved
PUNPCKLV\D 16 Low 4 words from source and destination SSE2

118

interleaved

PUNPCKLDQ 32 Low 2 dwords from source and destination SSE2
interleaved
PUNPCKLQDQ 64 Low gword unchanged, SSE2
high gword from low of source
PUNPCKHBW 8 High 8 bytes from source and destination SSE2
interleaved
PUNPCKHD 16 High 4 words from source and destination SSE2
interleaved
PUNPCKHDQ 32 High 2 dwords from source and destination SSE2
interleaved
PUNPCKHQDQ 64 Low qword from high of destination, SSE2
high gword from high of source
PACKUSV\B 8 Low 8 bytes from 8 words of destination, high 8 | SSE2
bytes from 8 words of source. Converted with
unsigned saturation.
PACKSSV\B 8 Low 8 bytes from 8 words of destination, high 8 | SSE2
bytes from 8 words of source. Converted with
signed saturation.
PACKSSDW 16 Low 4 words from 4 dwords of destination, high | SSE2
4 words from 4 dwords of source. Converted
with signed saturation.
MOVQ 64 Low gword from source, high gword set to zero | SSE2
Pl NSRB 8 Insert byte into vector SSE4.1
Pl NSRW 16 Insert word into vector SSE
Pl NSRD 32 Insert dword into vector SSE4.1
| NSERTPS 32 Insert dword into vector SSE4.1
Pl NSRQ 64 Insert gqword into vector SSE4.1
VI NSERTF128 128 Insert xmmword into vector AVX
PBLENDW 16 Blend from two different sources SSEA4.1
BLENDPS 32 Blend from two different sources SSEA4.1
BLENDPD 64 Blend from two different sources SSE4.1
PBLENDVB 8 Multiplexer SSE4.1
BLENDVPS 32 Multiplexer SSE4.1
BLENDVPD 64 Multiplexer SSE4.1
VPCMOV 1 Multiplexer AMD XOP
PALI GNR 8 Double shift (analogous to SHRD) Suppl. SSE3

Table 13.5. Combine data

119

Copying data to multiple elements of a register (broadcast)
(Use same register for source and destination)

Instruction Block size, Description Instruction
bits set
PSHUFD 32 Broadcast any dword SSE2
SHUFPS 32 Broadcast dword SSE
SHUFPD 64 Broadcast qword SSE2
MOVLHPS 64 Broadcast qword SSE2
MOVHLPS 64 Broadcast high qword SSE2
MOVDDUP 64 Broadcast qword SSE3
MOVSL DUP 32 Copy dword 0 to 1, copy dword 2 to 3 SSE3
MOVSHDUP 32 Copy dword 1 to 0, copy dword 3 to 2 SSE3
PUNPCKLBW 8 Duplicate each of the lower 8 bytes SSE2
PUNPCKLV\D 16 Duplicate each of the lower 4 words SSE2
PUNPCKLDQ 32 Duplicate each of the lower 2 dwords SSE2
PUNPCKL QDQ 64 Broadcast qword SSE2
PUNPCKHBW 8 Duplicate each of the higher 8 bytes SSE2
PUNPCKHWD 16 Duplicate each of the higher 4 words SSE2
PUNPCKHDQ 32 Duplicate each of the higher 2 dwords SSE2
PUNPCKHQDQ 64 Broadcast high qword SSE2
PSHUFB 8 Broadcast any byte or larger element Suppl. SSE3
Table 13.6. Broadcast data
Copy data from one register or memory to all elements of another register
(broadcast)
Instruction Block Description Instruction
size, bits set
PSHUFD xmm®, xml, 0 32 Broadcast dword SSE2
PSHUFD xmm®, xnmi, OEEH 64 Broadcast qword SSE2
MOVDDUP 64 Broadcast qword SSE3
MOVSL DUP 32 2 copies of each of dword 0 and 2 SSE3
MOVSHDUP 32 2 copies of each of dword 1 and 3 SSE3
VBROADCASTSS 32 Broadcast dword from memory AVX
VBROADCASTSD 64 Broadcast gword from memory AVX
VBROADCASTF128 128 Broadcast 16 bytes from memory AVX

Table 13.7. Move and broadcast data

Example: Horizontal addition

The following examples show how to add all elements of a vector

Exanmpl e 13.6a. Add 16 elenments in vector of 8-bit

unsi gned integers

(SSE2)
novaps xmml, [source] ; Source vector, 16 8-bit unsigned integers
pxor xmD, xmmD ;0
psadbw xnmmil, xnmD ; Sum of 8 differences
pshufd xnmD, xmml, OEH ; Get bit 64-127 from xmil
paddd xnm0, xmml ; Sum
novd [sun], xmmD ; Store sum
; Exanple 13.6b. Add eight elements in vector of 16-bit integers
: (SUPPL. SSE3)
novaps xmD, [source] ; Source vector, 8 16-bit integers
phaddw xnm0, xmmD
phaddw xnm0, xmmD

120

phaddw xm©O, xmrD

novq [sun], xnmD ; Store sum

; Exanple 13.6c. Add eight elements in vector of 32-bit integers
;. (AVX)

vnovaps ymmD, [source] ; Source vector, 8 32-bit floats
vextractf128 xnml, ym0D, 1 ; Get upper half

vaddps xmD, xmmD, xmil ; Add

vhaddps xn0, xm0, xmD

vhaddps xnm0, xm0, xmD

vnovsd [sun, xmMmD ; Store sum

13.4 Generating constants

There is no instruction for moving a constant into an XMM register. The default way of
putting a constant into an XMM register is to load it from a memory constant. This is also the
most efficient way if cache misses are rare. But if cache misses are frequent then we may
look for alternatives.

One alternative is to copy the constant from a static memory location to the stack outside
the innermost loop and use the stack copy inside the innermost loop. A memory location on
the stack is less likely to cause cache misses than a memory location in a constant data
segment. However, this option may not be possible in library functions.

A second alternative is to store the constant to stack memory using integer instructions and
then load the value from the stack memory to the XMM register.

A third alternative is to generate the constant by clever use of various instructions. This
does not use the data cache but takes more space in the code cache. The code cache is
less likely to cause cache misses because the code is contiguous.

The constants may be reused many times as long as the register is not needed for
something else.

The table 13.8 below shows how to make various integer constants in XMM registers. The
same value is generated in all cells in the vector:

Making constants for integer vectors in XMM registers

Value | 8 bit 16 bit 32 bit 64 bit

0 pxor xnmmD, xnD pxor xnmmD, xnmD pxor xmO, xnm0 pxor xmO, xnm0

1 pcnpegw xnmO, xnmD pcnpegw xnmO, xnmD pcnpeqd xmD, xnmD pcnpegw xnmD, xnmmD
psrlw xnmD, 15 psrlw xnmD, 15 psrld xmmD, 31 psrlg xmmoO, 63
packuswb xmD, xnm0

2 pcnpegw xnmO, xnmD pcnpegw xnmO, xnmD pcnpeqd xmD, xnmD pcnpegw xnmD, xnmmD
psrlw xmD, 15 psrlw xmD, 15 psrid xmD, 31 psrlg xmmD, 63
psl | w xnmD, 1 psl | w xnmD, 1 pslld xmoO, 1 psllg xmoO, 1
packuswb xmD, xnm0

3 pcnpegw xnmO, xnmD pcnpegw xnmO, xnmD pcnpeqd xm0, xnmD pcnpegw xnmmD, xnmmD
psrlw xmmDO, 14 psrlw xmmDO, 14 psrld xmD, 30 psrlg xmD, 62
packuswb xmmD, Xm0

4 pcnpegw xnmO, xnmD pcnpegw xnmO, xnmD pcnpeqd xmD, xnmD pcnpegw xnmD, xnmmD
psrlw xnmD, 15 psrlw xnmD, 15 psrld xmmD, 31 psrlg xmmoO, 63
psllw xmO, 2 psl |l w xmO, 2 pslld xmDO, 2 psll g xmDO, 2
packuswb xmmD, Xm0

-1 pcnpegw xnmO, xnmD pcnpegw xnmO, xnmD pcnpeqd xmD, xnmD pcnpegw xnmD, xnmmD

-2 pcnpegw xnmO, xnmD pcnpegw xnmO, xnmD pcnpeqd xmD, xnmD pcnpegw xnmD, xnmmD
psl | w xnmD, 1 psl | w xnmD, 1 pslld xmoO, 1 psllg xmoO, 1
packsswb xmD, xnm0

Other nov eax, nov eax, nov eax, val ue nov rax, val ue

value val ue*01010101H val ue*10001H nmovd xmmD, eax novqg xmmo, r ax

movd xmmD, eax
pshufd xnmm0, xrmD0, 0

movd xnmmD, eax
pshufd xnm0, xrmo0, 0

pshufd xm0O, xnrmD, 0

punpckl gdg xm0, xnmD
(64 bit node only)

121

Table 13.8. Generate integer vector constants

Table 13.9 below shows how to make various floating point constants in XMM registers. The
same value is generated in one or all cells in the vector:

Making floating point constants in XMM registers

Value | scalar single scalar double vector single vector double

0.0 pxor xnmmD, xnmD pxor xnmmD, xnmOD pxor xmO, xnm0 pxor xmO, xnm0

05 pcnpegw xnmO, xnmD pcnpegw xnmO, xnmD pcnpegw xnmD, xnmmD pcnpegw xnmD, xnmmD
pslld xnmD, 26 psl | g xnmD, 55 pslld xmmO, 26 psl I g xmO, 55
psrld xmoO, 2 psrlgq xmoO, 2 psrld xmDO, 2 psrlq xmmD, 2

1.0 pcnpegw xnmD, xnmD pcnpegw xnmO, xnmD pcnpegw xnmD, xnmmD pcnpegw xnmm0, xnmmD
pslld xmO, 25 psl 1l g xmD, 54 psl 1 d xmD, 25 psl 1 g xmD, 54
psrlid xnmmD, 2 psrlq xnmD, 2 psrld xmoO, 2 psrlg xmoO, 2

1.5 pcnpegw xnmO, xnmD pcnpegw xnmO, xnmD pcnpegw xnmD, xnmmD pcnpegw xnmD, xnmmD
pslld xnmmD, 24 psll g xnmD, 53 pslld xmmoO, 24 psl g xmmoO, 53
psrlid xmO, 2 psrlgq xmoO, 2 psrld xmDO, 2 psrlq xmmDO, 2

2.0 pcnpegw xnmO, xnmD pcnpegw xnmO, xnmD pcnpegw xnmD, xnmmD pcnpegw xnmm0, xnmmD
pslld xmoO, 31 psl 1 g xmO, 63 pslld xmDO, 31 psl 1l g xmD, 63
psrid xmmD, 1 psrlq xnmmD, 1 psrid xmoO, 1 psrlg xmoO, 1

2.0 pcnpegw xnmO, xnmD pcnpegw xnmO, xnmD pcnpegw xnmD, xnmmD pcnpegw xnmD, xnmmD
psl |l d xnmD, 30 psl |l g xnmD, 62 psl I d xmm0, 30 psl g xmmD, 62

sign bit |pcnrpeqw xmmO, xmMD pcnpegw xnmD, xnmD pcnpegw xnmD, xnmmD pcnpegw xnmD, xnmmD
pslld xnmD, 31 psl |l g xnmD, 63 pslld xnmD, 31 psl g xmmO, 63

not pcnpegw xnmD, xnmD pcnpegw xnmO, xnmD pcnpegw xnmD, xnmmD pcnpegw xnm0, xnmmD

sign bit psrid xmo0, 1 psriqg xmoO, 1 psrid xmo, 1 psrig xmo, 1

Other |nmov eax, value nmov eax, value>>32 |nmov eax, value nov eax, val ue>>32

value movd xnmmD, eax movd xnmmD, eax movd xmm0, eax movd xmm0, eax

. psl |l g xnmD, 32 shuf ps xmm®O, xmO, 0 pshufd xm0O, xnmD, 22H

(32 bit

mode)

Other nov eax, val ue nov rax, value nmov eax, val ue mov rax, val ue

value novd xmD, eax novq xmD, r ax nmovd xmmD, eax novqg xmmoO, r ax

. shuf ps xm®O, xmmO, 0 shuf pd xmm®O, xmmO, 0
(64 bit
mode)

Table 13.9. Generate floating point vector constants

The "sign bit" is a value with the sign bit set and all other bits = 0. This is used for changing
or setting the sign of a variable. For example to change the sign of a 2*double vector in
xmO:

; Exanple 13.7. Change sign of 2*doubl e vector

pcnpeqw Xnmy, Xnmy ;o Al 1's
psllq X, 63 ; Shift out the lower 63 1's
xor pd Xm0, xmmv ; Flip sign bit of xmmD

The "not sign bit" is the inverted value of "sign bit". It has the sign bit = 0 and all other bits =
1. This is used for getting the absolute value of a variable. For example to get the absolute
value of a 2*double vector in xmmD:

; Exanpl e 13.8. Absolute val ue of 2*doubl e vector

pcnpeqw xmb, Xmb ;o Al 1's
psrlq xmg, 1 ; Shift out the highest bit
andpd Xm0, xnmmb ; Set sign bit to O

Generating an arbitrary double precision value in 32-bit mode is more complicated. The
method in table 13.9 uses only the upper 32 bits of the 64-bit representation of the number,
assuming that the lower binary decimals of the number are zero or that an approximation is
acceptable. For example, to generate the double value 9.25, we first use a compiler or

122

assembler to find that the hexadecimal representation of 9.25 is 4022800000000000H. The
lower 32 bits can be ignored, so we can do as follows:

Exanpl e 13.9a. Set 2*double vector to arbitrary value (32 bit node)

nov eax, 40228000H ; High 32 bits of 9.25
novd xm0, eax ; Move to xmD
pshufd xm©O, xm0, 22H ; Get value into dword 1 and 3

In 64-bit mode, we can use 64-bit integer registers:

Exanmpl e 13.9b. Set 2*double vector to arbitrary value (64 bit node)

nov rax, 4022800000000000H ; Full representation of 9.25
novq xmD, rax ; Move to xmmD
shuf pd xmD, xmD, O ; Broadcast

Note that some assemblers use the very misleading name novd instead of novq for the
instruction that moves 64 bits between a general purpose register and an XMMregister.

13.5 Accessing unaligned data

All data that are read or written with vector registers should be aligned by the vector size if
possible. See page 82 for how to align data.

However, there are situations where alignment is not possible, for example if a library
function receives a pointer to an array and it is unknown whether the array is aligned or not.

The following methods can be used for reading unaligned vectors:

Using unaligned read instructions

The instructions novdqu, novups, novupd and | ddqu are all able to read unaligned vectors.
| ddqu is faster than the alternatives on P4E and PM processors, but requires the SSE3
instruction set. The unaligned read instructions are relatively slow on older processors, but
faster on Nehalem, Sandy Bridge and on future AMD and Intel processors.

Exanmpl e 13.10. Unaligned vector read
esi contains pointer to unaligned array
novdqu xmD, [esi] ; Read vector unaligned

Splitting an unaligned read in two

Instructions that read 8 bytes or less have no alignment requirements and are often quite
fast unless the read crosses a cache boundary. Example:

; Exanple 13.11. Unaligned 16 bytes read split in two

; esi contains pointer to unaligned array

novq xnD, qword ptr [esi] ; Read | ower half of vector
movhps xmmO, gword ptr [esi+8] ; Read upper half of vector

This method is faster than using unaligned read instructions on older processors, but not on
Nehalem, Sandy Bridge and future processors. It may also be advantageous to split an
unaligned 32 bytes read into two 16 bytes reads:

Exanmpl e 13.12. Unaligned 32 bytes read split in tw (AVX)
esi contains pointer to unaligned array
vovups xnmD, xmmaord ptr [esi] ; Read | ower half
vinsertf128 ymoO, ymm0O, xnmword ptr[esi +16], 1 ; Read upper half

123

Partially overlapping reads

Make the first read from the unaligned address and the next read from the nearest following
16-bytes boundary. The first two reads will therefore possibly overlap:

Exanpl e 13.13. First unaligned read overlaps next aligned read
esi contains pointer to unaligned array

novdqu xmil, [esi] ; Read vector unaligned

add esi, 10H

and esi, -10H ; = nearest follow ng 16B boundary
novdga xmm2, [esi] ; Read next vector aligned

Here, the data in xnrmil and xnm2 will be partially overlapping if esi is not divisible by 16.
This, of course, only works if the following algorithm allows the redundant data. The last
vector read can also overlap with the last-but-one if the end of the array is not aligned.

Reading from the nearest preceding 16-bytes boundary

It is possible to start reading from the nearest preceding 16-bytes boundary of an unaligned
array. This will put irrelevant data into part of the vector register, and these data must be
ignored. Likewise, the last read may go past the end of the array until the next 16-bytes
boundary:

Exanpl e 13. 14. Reading from nearest preceding 16-bytes boundary
; esi contains pointer to unaligned array

nov eax, esi ; Copy pointer

and esi, -10H ; Round down to value divisible by 16
and eax, OFH ; Array is misaligned by this val ue
novdga xmil, [esi] ; Read from precedi ng 16B boundary
novdga xm2, [esi+10H] ; Read next bl ock

In the above example, xnmml contains eax bytes of junk followed by (16-eax) useful bytes.
xmm®2 contains the remaining eax bytes of the vector followed by (16-eax) bytes which are
either junk or belonging to the next vector. The value in eax should then be used for
masking out or ignoring the part of the register that contains junk data.

Here we are taking advantage of the fact that vector sizes, cache line sizes and memory
page sizes are always powers of 2. The cache line boundaries and memory page
boundaries will therefore coincide with vector boundaries. While we are reading some
irrelevant data with this method, we will never load any unnecessary cache line, because
cache lines are always aligned by some multiple of 16. There is therefore no cost to reading
the irrelevant data. And, more importantly, we will never get a read fault for reading from
non-existing memory addresses, because data memory is always allocated in pages of
4096 (= 2'%) bytes or more so the aligned vector read can never cross a memory page
boundary.

An example using this method is shown in the st r | enSSE2. asmexample in the appendix
www.agner.org/optimize/asmexamples.zip.

Combine two unaligned vector parts into one aligned vector

The above method can be extended by combining the valid parts of two registers into one
full register. If xnmi in example 13.14 is shifted right by the unalignment value (eax) and
xmm? is shifted left by (16-eax) then the two registers can be combined into one vector
containing only valid data.

Unfortunately, there is no instruction to shift a whole vector register right or left by a variable
count (analogous to shr eax, cl) so we have to use a shuffle instruction. The next
example uses a byte shuffle instruction, PSHUFB, with appropriate mask values for shifting a
vector register right or left:

124

http://www.agner.org/optimize/asmexamples.zip

; Exanple 13.15. Conbining two unaligned parts into one vector
; (Suppl ement ary- SSE3 i nstruction set required)

; This exanple takes the squareroot of n floats in an unaligned
; array src and stores the result in an aligned array dest.

; C++ code

; const int n = 100;

; float * src;

; float dest[n];

; for (int 1=0; i<n; i++) dest[i] = sqrt(src[i]);

; Define masks for using PSHUFB instruction as shift instruction:
; The 16 bytes from SMvask[16+a] will shift right a bytes

; The 16 bytes from SMask[16-a] will shift left a bytes

.data

SMask | abel xmmaord
oB-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
bB o 1, 2, 3, 4 5 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
oB-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
. code
nov esi, src ; Unal i gned pointer src
| ea edi, dest ; Aligned array dest
nov eax, esi
and eax, OFH ; CGet misalignment, a
nmovdqu xmm#, [SMask+10H+eax] ; Mask for shift right by a
nmovdqu xmb, [SMask+eax] ; Mask for shift left by 16-a
and esi, -10H ; Nearest preceding 16B boundary
xor ecx, ecx ; Loop counter i =0
L: ; Loop
novdga xmmil, [esi+ecx] ; Read from precedi ng boundary
novdga xmm2, [esi+ecx+10H| ; Read next bl ock
pshufb xmil, xmd ; shift right by a
pshufb xm2, xmb ; shift left by 16-a
por xmml, xmmP ; combi ne bl ocks
sqrtps xmml, xmml ; conmpute four squareroots
novaps [edi +ecx], xmil ; Save result aligned
add ecx, 10H ; Loop to next four val ues
cnp ecx, 400 7 4*n
jb L ; Loop

Align SMvask by 64 if possible to avoid misaligned reads across a cache line boundary.

This method gets easier if the value of the misalignment (eax) is a known constant. We can
use PSRLDQand PSLLDQinstead of PSHUFB for shifting the registers right and left. PSRLDQ
and PSLLDQbelong to the SSE2 instruction set, while PSHUFB requires supplementary-
SSES3. The number of instructions can be reduced by using the PALI G\R instruction
(Supplementary-SSE3) when the shift count is constant. Certain tricks with MOVSS or MOVSD
are possible when the misalignment is 4, 8 or 12, as shown in example 13.16b below.

The fastest implementation has sixteen branches of code for each of the possible alignment
values in eax. See the examples for nencpy and nenset in the appendix
www.agner.org/optimize/asmexamples.zip.

Combining unaligned vector parts from same array

Misalignment is inevitable when an operation is performed between two elements in the
same array and the distance between the elements is not a multiple of the vector size. In
the following C++ example, each array element is added to the preceding element:

/1 Example 13.16a. Add each array elenent to the preceding el ement
125

http://www.agner.org/optimize/asmexamples.zip

float x[100];
for (int i =0; i <99; i++) x[i] += x[i+1];

Here x[i +1] is inevitably misaligned relative to x[i] . We can still use the method of
combining parts of two aligned vectors, and take advantage of the fact that the
misalignment is a known constant, 4.

; Exanpl e 13.16b. Add each array el enment to the precedi ng el enent

xor ecx, ecx ; Loop counter i =0
| ea esi, X ; Pointer to aligned array
nmovaps xmD, [esi] ; X3, x2, x1, x0
L: ; Loop
nmovaps xmm2, xmmD ;o X3, x2,x1, x0
novaps xmil, [esi+ecx+10H| ; X7, x6, x5, x4
; Use trick with novss to conmbine parts of two vectors
novVssS xmR, xmil 7 X3, x2,x1, x4

; Rotate right by 4 bytes
shuf ps xm2, xmm2, 00111001B ; x4, x3,x2,x1

addps xmD, xmmP ¢ X3+Xx4, X2+x3, x1+x2, x0+x1
novaps [esi+ecx], xmmD ; save aligned
nmovaps xmD, xmil ; Save for next iteration
add ecx, 16 ;i += 4
cnp ecx, 400-16 ; Repeat for 96 val ues
ib L
; Do the | ast odd one:
L: movaps xmg, xnm0 7 X99, x98, x97, x96
Xor ps xml, xnmi ; 0,0,0,0
novss xme, xmril ;o X99, x98, x97, 0

; Rotate right by 4 bytes

shuf ps xmm®2, xmm2, 00111001B ; 0, x99, x98, x97

addps Xm0, xnmme ; X99+0, x98+x99, x97+x98, x96+x97
novaps [esi+ecx], xmmD ; save aligned

Now we have discussed several methods for reading unaligned vectors. Of course we also
have to discuss how to write vectors to unaligned addresses. Some of the methods are
virtually the same.

Using unaligned write instructions

The instructions movdqu, novups, and novupd are all able to write unaligned vectors. The
unaligned write instructions are relatively slow on older processors, but fast on Nehalem,
Sandy Bridge and on future AMD and Intel processors.

; Exanple 13.17. Unaligned vector wite
; edi contains pointer to unaligned array
novdqu [edi], xmmD ; Wite vector unaligned

Writing 8 bytes at a time

Instructions that write 8 bytes or less have no alignment requirements and are often quite
fast unless the write crosses a cache line boundary. Example:

; Exanple 13.18. Unaligned vector read split in two

; edi contains pointer to unaligned array

novq gword ptr [edi], xmmD ; Wite lower half of vector
novhps qword ptr [edi +8], xmD ; Wite upper half of vector

This method is faster than using MOVDQU on processors that have slow misaligned access.

126

Partially overlapping writes

Make the first write to the unaligned address and the next write to the nearest following 16-
bytes boundary. The first two writes will therefore possibly overlap:

Exanpl e 13.19. First unaligned wite overlaps next aligned wite
edi contains pointer to unaligned array

novdqu [edi], xnmil ; Wite vector unaligned

add edi, 10H

and edi, OFH ; = nearest follow ng 16B boundary
novdga [edi], xm® ; Wite next vector aligned

Here, the data from xmmil and xmm®2 will be partially overlapping if edi is not divisible by 16.
This, of course, only works if the algorithm can generate the overlapping data. The last
vector write can also overlap with the last-but-one if the end of the array is not aligned. See
the nenset example in the appendix www.agner.org/optimize/asmexamples.zip.

Writing the beginning and the end separately

Use non-vector instructions for writing from the beginning of an unaligned array until the first
16-bytes boundary, and again from the last 16-bytes boundary to the end of the array. See
the mencpy example in the appendix www.agner.org/optimize/asmexamples.zip.

Using masked write

The instruction MASKMOVDQU can be used for writing to the first part of an unaligned array up
to the first 16-bytes boundary as well as the last part after the last 16-bytes boundary. This
method can be quite slow. On some processors this instruction doesn't use the cache.

13.6 Using AVX instruction set and YMM registers

The AVX instruction set extends the 128-bit XMM registers to 256-bit YMM registers. It is
available in Intel Sandy Bridge and AMD Bulldozer processors. Further extensions to 512 or
1024 bits are likely in the future. Each XMM register forms the lower half of a YMM register.
A YMM register can hold a vector of 8 single precision or 4 double precision floating point
numbers. Most XMM and YMM instructions will allow three operands: one destination and
two source operands.

The AVX instruction set does not support integer operations in 256-bit vectors. You may
convert integers to floating point using VCVTDQ2PS and using floating point vector
operations. It is possible that integer vector operations will be supported in a future
instruction set.

All the existing XMM instructions have two versions in the AVX instruction set. A legacy
version which leaves the upper half (bit 128-255) of the target YMM register unchanged,
and a VEX-prefix version which sets the upper half to zero in order to remove false
dependences. If a code sequence contains both 128-bit and 256-bit instructions then it is
important to use the VEX-prefix version of the 128-bit instructions. Mixing 256 bit
instructions with legacy 128-bit instructions without VEX prefix will cause the processor to
switch the register file between different states which may cost many clock cycles.

For the sake of compatibility with existing code, the register set has three different states:
A. The upper half of all YMM registers is unused and known to be zero.
B. The upper half of at least one YMM register is used and contains data.

C. All YMM registers are split in two. The lower half is used by legacy XMM instructions
which leave the upper part unchanged. All the upper-part halves are stored in a

127

http://www.agner.org/optimize/asmexamples.zip
http://www.agner.org/optimize/asmexamples.zip

scratchpad. The two parts of each register will be joined together again if needed by
a transition to state B.

Two instructions are available for the sake of fast transition between the states. VZEROALL
which sets all YMM registers to zero, and VZEROUPPER which sets the upper half of all YMM
registers to zero. Both instructions leave the processor in state A. The state transitions can
be illustrated by the following state transition table:

Current state - A B C
Instruction |

VZEROALL / UPPER A A A
XMM A C C
VEX XMM A B B
YMM B B B

Table 13.10. YMM state transitions

State A is the neutral initial state. State B is needed when the full YMM registers are used.
State C is needed for making legacy XMM code fast and free of false dependences when
called from state B. A transition from state B to C is costly because all YMM registers must
be split in two halves which are stored separately. A transition from state C to B is equally
costly because all the registers have to be merged together again. A transition from state C
to A is also costly because the scratchpad containing the upper part of the registers does
not support out-of-order access and must be protected from speculative execution in
possibly mispredicted branches. The transitions B -~ C, C - B and C - A are very time
consuming because they have to wait for all registers to retire. Each of these transitions
take approximately 70 clock cycles on the Sandy Bridge, according to my measurements.
Transitions A - B and B - A are fast, taking at most one clock cycle. C should be regarded
as an undesired state, and the transition A - C is not possible.

The following examples illustrate the state transitions:

Exampl e 13.20a. Transition between YMM st ates

vaddps ynmm0, ynmil, ym®R ; State B
addss xmB, xmmi ; State C
vl ps ym0, ym0, ymmb State B

Example 13.20a has two expensive state transitions, from B to C, and back to state B. The
state transition can be avoided by replacing the legacy ADDSS instruction by the VEX-coded
version VADDSS:

Exanmpl e 13.20b. Transition between YMM st ates avoi ded

vaddps ymm0, ynmil, ym®R ; State B
vaddss xmB, xm8, xm+# ; State B
vl ps ym0, ym0, ymmb State B

This method cannot be used when calling a library function that uses XMM instructions. The
solution here is to save any used YMM registers and go to state A:

Exanmpl e 13.20c. Transition to state A

vaddps ym0, ymil, ym®P State B
vnovaps [men], ynmD ; Save ynmD
vzeroupper ; State A

cal | XMM_Functi on ; Legacy function
vnovaps ym0, [rmeni ; Restore ynmD
vl ps ym0, ym0, ymmb State B

vzer oupper
ret

Go to state A before returning

128

XMM_Function proc near
addss xnm8, xmid ; State A
ret

Any program that mixes XMM and YMM code should follow certain guidelines in order to
avoid the costly transitions to and from state C:

e Afunction that uses YMM instructions should issue a VZEROALL or VZEROUPPER
before returning if there is a possibility that it might be called from XMvicode.

» Afunction that uses YMM instructions should save any used YMM register and issue
a VZERQALL or VZEROUPPER before calling any function that might contain XMM code.

» Afunction that has a CPU dispatcher for choosing YMM code if available and XMM
code otherwise, should issue a VZEROALL or VZEROUPPER before leaving the YMM
part.

In other words: The ABI allows any function to use XMM or YMM registers, but a function
that uses YMM registers must leave the registers in state A before calling any ABI compliant
function and before returning to any ABI compliant function.

Obviously, this does not apply to functions that use full YMM registers for parameter transfer
or return. A function that uses YMM registers for parameter transfer can assume state B on
entry. A function that uses a YMM register (YMWD) for the return value can only be in state B
on return. State C should always be avoided.

The VZEROUPPER instruction is much faster than VZEROALL on the Sandy Bridge. Therefore,
it is recommended to use VZEROUPPER rather than VZEROALL unless you want a complete
initialization. VZEROALL cannot be used in 64-bit Windows because the ABI specifies that
registers XMv6 - XMML5 have callee-save status. In other words, the calling function can
assume that register XM\v6 - XMML5, but not the upper halves of the YMM registers, are
unchanged after return. No XMM or YMM registers have callee-save status in 32-bit
Windows or in any Unix system (Linux, BSD, Mac). Therefore it is OK to use VZEROALL in
e.g. 64-bit Linux. Obviously, VZEROALL cannot be used if any XMM register contains a
function parameter or return value. VZEROUPPER must be used in these cases.

Mixing YMM instructions and non-VEX XMM instructions is a common error that is very
easy to make and very difficult to detect. The code will still work, but with reduced
performance. It is strongly recommended that you double-check your code for any mixing of
VEX and non-VEX instructions.

Operating system support

Code that uses YMM registers or VEX coded instructions can only run in an operating
system that supports it because the operating system must save the YMM registers on task
switches. The following operating system versions support AVX and YMM registers:
Windows 7, Windows server 2008 SP2, Linux kernel version 2.6.30 and later.

YMM and system code

A situation where transitions between state B and C must take place is when YMM code is
interrupted and the interrupt handler contains legacy XMM code that saves the XMM
registers but not the full YMM registers. In fact, state C was invented exactly for the sake of
preserving the upper part of the YMM registers in this situation.

It is very important to follow certain rules when writing device drivers and other system code
that might be called from interrupt handlers. If any YMM register is modified by a YMM
instruction or a VEX-XMM instruction in system code then it is necessary to save the entire
register state with XSAVE first and restore it with XRESTOR before returning. It is not sufficient

129

to save the individual YMM registers because future processors, which may extend the
YMM registers further to 512-bit ZMM registers (or whatever they will be called), will zero-
extend the YMM registers to ZMM when executing YMM instructions and thereby destroy
the highest part of the ZMM registers. XSAVE / XRESTOR is the only way of saving these
registers that is compatible with future extensions beyond 256 bits. Future extensions will
not use the complicated method of having two versions of every YMM instruction.

If a device driver does not use XSAVE / XRESTOR then there is a risk that it might
inadvertently use YMM registers even if the programmer did not intend this. A compiler that
is not intended for system code may insert implicit calls to library functions such as nenset
and nentpy. These functions typically have their own CPU dispatcher which may select the
largest register size available. It is therefore necessary to use a compiler and a function
library that are intended for making system code.

These rules are described in more detail in manual 5: "Calling conventions".

Using non-destructive three-operand instructions

The AVX instruction set which defines the YMM instructions also defines an alternative
encoding of all existing XMM instructions by replacing existing prefixes and escape codes
with the new VEX prefix. The VEX prefix has the further advantage that it defines an extra
register operand. Almost all XMM instructions that previously had two operands now have
three operands when the VEX prefix is used. This includes the integer vector XMM
instructions that do not yet support the full YMM registers.

The two-operand version of an instruction typically uses the same register for the
destination and for one of the source operands:

; Exanpl e 13.21a. Two-operand instructions
movsd xmD, xmrl ;Xm0 X il
addsd xmmD, xmm?P ;Xm0 xmD + xmmP

This has the disadvantage that the result overwrites the value of one of the source
operands. The move instruction in example 13.21a can be avoided when the three-operand
version of the addition is used:

; Exanpl e 13.21b. Three-operand instruction
vaddsd xmm®D, xmml, xmmP ;Xm0 = xmml + xnm2

Here none of the source operands are destroyed because the result can be stored in a
different destination register. This can be useful for avoiding register-to-register moves. The
addsd and vaddsd instructions in example 13.21a and 13.21b have exactly the same
length. Therefore there is no penalty for using the three-operand version. The instructions
with names ending in ps (packed single precision) are one byte shorter in the two-operand
version than the three-operand VEX version if the destination register is not xmm8 - xnm5.
The three-operand version is shorter than the two-operand version in a few cases. In most
cases the two- and three-operand versions have the same length.

It is possible to mix two-operand and three-operand instructions in the same code as long
as the register set is in state A. But if the register set happens to be in state C for whatever
reason then the mixing of XMM instructions with and without VEX will cause a costly state
change every time the instruction type changes. It is therefore better to use VEX versions
only or non-VEX only. If YMM registers are used (state B) then you should use only the
VEX-prefix version for all XMM instructions until the VEX-section of code is ended with a
VZEROALL or VZEROUPPER.

The 64-bit MMX instructions and general purpose register instructions do not have three
operand versions. There is no penalty for mixing MMX and VEX instructions. It is possible

130

that some general purpose register instructions will have three-operand versions in a future
instruction set.

Unaligned memory access

All VEX coded XMM and YMM instructions with a memory operand allow unaligned memory
access, except for the explicitly aligned instructions VMOVAPS, VMOVAPD, VMOVDQA, VMOVNTPS,
VMOVNTPD, VMWNTDQ. Therefore, it is possible to store YMM operands on the stack without
keeping the stack aligned by 32.

Compiler support
The VEX instruction set is supported in the Microsoft, Intel and Gnu compilers.

The compilers will use the VEX prefix version for all XMM instructions, including intrinsic
functions, if compiling for the AVX instruction set. It is the responsibility of the programmer
to issue a VZEROUPPER instruction before any transition from a module compiled with AVX to
a module or library compiled without AVX.

Examples

Example 12.6f page 98 illustrates the use of the AVX instruction set for a DAXPY
calculation. Example 12.9e page 107 illustrates the use of the AVX instruction set for a
Taylor series expansion. Both examples show the use of three-operand instructions and a
vector size of 256 bits.

13.7 Vector operations in general purpose registers

Sometimes it is possible to handle packed data in 32-bit or 64-bit general purpose registers.
You may use this method on processors where integer operations are faster than vector
operations or where vector operations are not available.

A 64-bit register can hold two 32-bit integers, four 16-bit integers, eight 8-bit integers, or 64
Booleans. When doing calculations on packed integers in 32-bit or 64-bit registers, you
have to take special care to avoid carries from one operand going into the next operand if
overflow is possible. Carry does not occur if all operands are positive and so small that
overflow cannot occur. For example, you can pack four positive 16-bit integers into RAX and
use ADD RAX, RBX instead of PADDW MVD, MML if you are sure that overflow will not occur. If
carry cannot be ruled out then you have to mask out the highest bit, as in the following
example, which adds 2 to all four bytes in EAX:

; Exanple 13.22. Byte vector addition in 32-bit register

nov eax, [esi] ; read 4-bytes operand

nov ebx, eax ; copy into ebx

and eax, T7f7f7f7fh ; get lower 7 bits of each byte in eax
Xor ebx, eax ; get the highest bit of each byte

add eax, 02020202h ; add desired value to all four bytes
xor eax, ebx ; combine bits again

nov [edi], eax ; store result

Here the highest bit of each byte is masked out to avoid a possible carry from each byte into
the next one when adding. The code is using XOR rather than ADD to put back the high bit
again, in order to avoid carry. If the second addend may have the high bit set as well, it
must be masked too. No masking is needed if none of the two addends have the high bit
set.

It is also possible to search for a specific byte. This C code illustrates the principle by
checking if a 32-bit integer contains at least one byte of zero:

/1 Exanple 13.23. Return nonzero if dword contains null byte

131

inline int dword _has_nullbyte(int w {
return ((w - 0x01010101) & ~w & 0x80808080);}

The output is zero if all four bytes of w are nonzero. The output will have 0x80 in the position
of the first byte of zero. If there are more than one bytes of zero then the subsequent bytes
are not necessarily indicated. (This method was invented by Alan Mycroft and published in
1987. | published the same method in 1996 in the first version of this manual unaware that
Mycroft had made the same invention before me).

This principle can be used for finding the length of a zero-terminated string by searching for
the first byte of zero. It is faster than using REPNE SCASB:

; Exanple 13.24, optim zed strlen procedure (32-bit):
_strlen PRCC NEAR
extern "C'" int strlen (const char * s);

push ebx ; ebx nust be saved

nov ecx, [esp+8] ; get pointer to string

nov eax, ecx ; copy pointer

and ecx, 3 ; lower 2 bits, check alignnent
iz L2 ; s is aligned by 4. Go to | oop
and eax, -4 ; align pointer by 4

nov ebx, [eax] ; read from precedi ng boundary
shl ecx, 3 ; *8 = displacenent in bits
nov edx, -1

shl edx, cl ; make byte mask

not edx ; mask = OFFH for fal se bytes
or ebx, edx ; mask out fal se bytes

check first four bytes for zero

| ea ecx, [ebx-01010101H] ; subtract 1 fromeach byte
not ebx ; invert all bytes

and ecx, ebx ; and these two

and ecx, 80808080H ; test all sign bits

j nz L3 ; zero-byte found

; Main loop, read 4 bytes aligne

L1: add eax, 4 ; increment pointer
L2: nov ebx, [eax] ; read 4 bytes of string
| ea ecx, [ebx-01010101H] ; subtract 1 fromeach byte
not ebx ; invert all bytes
and ecx, ebx ; and these two
and ecx, 80808080H ; test all sign bits
jz L1 ; no zero bytes, continue |oop
L3: bsf ecx, ecx ; find right-nost 1-bit
shr ecx, 3 ; divide by 8 = byte index
sub eax, [esp+8] ; Ssubtract start address
add eax, ecx ; add index to byte
pop ebx ; restore ebx
ret ; return value in eax
_strlen ENDP

The alignment check makes sure that we are only reading from addresses aligned by 4. The
function may read both before the beginning of the string and after the end, but since all
reads are aligned, we will not cross any cache line boundary or page boundary
unnecessarily. Most importantly, we will not get any page fault for reading beyond allocated
memory because page boundaries are always aligned by 2'? or more.

If the SSE2 instruction set is available then it may be faster to use XMM instructions with the
same alignment trick. Example 13.24 as well as a similar function using XMM registers are
provided in the appendix at www.agner.org/optimize/asmexamples.zip.

132

http://www.agner.org/optimize/asmexamples.zip

Other common functions that search for a specific byte, such as st rcpy, strchr, nenchr
can use the same trick. To search for a byte different from zero, just XOR with the desired
byte as illustrated in this C code:

/1 Exanple 13.25. Return nonzero if byte b contained in dword w
inline int dword _has_byte(int w, unsigned char b) {

w = b * 0x01010101;

return ((w - 0x01010101) & ~w & 0x80808080);}

Note if searching backwards (e.g. st rrchr) that the above method will indicate the position
of the first occurrence of b in win case there is more than one occurrence.

14 Multithreading

There is a limit to how much processing power you can get out of a single CPU. Therefore,
many modern computer systems have multiple CPU cores. The way to make use of multiple
CPU cores is to divide the computing job between multiple threads. The optimal number of
threads is usually equal to the number of CPU cores. The workload should ideally be evenly
divided between the threads.

Multithreading is useful where the code has an inherent parallelism that is coarse-grained.
Multithreading cannot be used for fine-grained parallelism because there is a considerable
overhead cost of starting and stopping threads and synchronizing the threads. Communi-
cation between threads can be quite costly, although these costs are reduced on newer
processors. The computing job should preferably be divided into threads at the highest
possible level. If the outermost loop can be parallelized, then it should be divided into one
loop for each thread, each doing its share of the whole job.

Thread-local storage should preferably use the stack. Static thread-local memory is
inefficient and should be avoided.

14.1 Hyperthreading

Some Intel processors can run two threads in the same core. The P4E has one core
capable of running two threads, the Atom has two cores capable of running two threads
each, and the Nehalem and Sandy Bridge have several cores capable of running two
threads each. Other processors, including processors from AMD and VIA, are able to run
multiple threads as well, but only one thread in each core.

Hyperthreading is Intel's term for running multiple threads in the same processor core. Two
threads running in the same core will always compete for the same resources, such as
cache, instruction decoder and execution units. If any of the shared resources are limiting
factors for the performance then there is no advantage to using hyperthreading. On the
contrary, each thread may run at less than half speed because of cache evictions and other
resource conflicts. But if a large fraction of the time goes to cache misses, branch
misprediction, or long dependency chains then each thread will run at more than half the
single-thread speed. In this case there is an advantage to using hyperthreading, but the
performance is not doubled. A thread that shares the resources of the core with another
thread will always run slower than a thread that runs alone in the core.

It may be necessary to do experiments in order to determine whether it is advantageous to
use hyperthreading or not in a particular application.

See manual 1: "Optimizing software in C++" for more details on multithreading and
hyperthreading.

133

15 CPU dispatching

If you are using instructions that are not supported by all microprocessors, then you must
first check if the program is running on a microprocessor that supports these instructions. If
your program can benefit significantly from using a particular instruction set, then you may
make one version of a critical part of the program that uses this instruction set, and another
version which is compatible with old microprocessors.

Manual 1 "Optimizing software in C++" chapter 13 has important advices on CPU
dispatching.

CPU dispatching can be implemented with branches or with a code pointer, as shown in the
following example.

Exanpl e 15.1. Function with CPU di spatching

MyFunction proc near
; Junp through pointer. The code pointer initially points to
; MyFunctionbDi spatch. MyFuncti onDi spatch changes the pointer
; so that it points to the appropriate version of MyFunction

The next tinme MyFunction is called, it junps directly to

; the right version of the function

j mp [MyFunct i onPoi nt]

; Code for each version. Put the nost probable version first:

MyFunct i onAVX
; AVX version of MyFunction
ret

MyFunct i onSSE2:
; SSE2 version of MyFunction
ret

MyFuncti on386:
; Generic/80386 version of MyFunction
ret

MyFuncti onDi spat ch
; Detect which instruction set is supported.
; Function InstructionSet is in asmib

call I nstructionSet ; eax indicates instruction set

nov edx, offset MyFuncti on386

cnp eax, 4 ; eax >= 4 if SSE2

ib Di spEnd

nov edx, offset My/Functi onSSE2

cnp eax, 11 ; eax >= 11 if AVX

jb Di spEnd

nov edx, offset MyFuncti onAVX
Di spEnd:

; Save pointer to appropriate version of MyFunction

nov [MyFuncti onPoi nt], edx

jmp edx ; Junp to this version
.data

MyFuncti onPoi nt DD MyFuncti onDi spatch ; Code pointer

. code
MyFunction endp

The function | nst ruct i onSet , which detects which instruction set is supported, is provided
in the library that can be downloaded from www.agner.org/optimize/asmlib.zip. Most
134

http://www.agner.org/optimize/asmlib.zip

operating systems also have functions for this purpose. Obviously, it is recommended to
store the output from | nst ruct i onSet rather than calling it again each time the information
is needed. See also www.agner.org/optimize/asmexamples.zip for detailed examples of
functions with CPU dispatching.

15.1 Checking for operating system support for XMM and YMM registers

Unfortunately, the information that can be obtained from the CPUI D instruction is not
sufficient for determining whether it is possible to use XMM registers. The operating system
has to save these registers during a task switch and restore them when the task is resumed.
The microprocessor can disable the use of the XMM registers in order to prevent their use
under old operating systems that do not save these registers. Operating systems that
support the use of XMM registers must set bit 9 of the control register CR4 to enable the use
of XMM registers and indicate its ability to save and restore these registers during task
switches. (Saving and restoring registers is actually faster when XMM registers are
enabled).

Unfortunately, the CR4 register can only be read in privileged mode. Application programs
therefore have a problem determining whether they are allowed to use the XMM registers or
not. According to official Intel documents, the only way for an application program to
determine whether the operating system supports the use of XMM registers is to try to
execute an XMM instruction and see if you get an invalid opcode exception. This is
ridiculous, because not all operating systems, compilers and programming languages
provide facilities for application programs to catch invalid opcode exceptions. The
advantage of using XMM registers evaporates completely if you have no way of knowing
whether you can use these registers without crashing your software.

These serious problems led me to search for an alternative way of checking if the operating
system supports the use of XMM registers, and fortunately | have found a way that works
reliably. If XMM registers are enabled, then the FXSAVE and FXRSTOR instructions can read
and modify the XMM registers. If XMM registers are disabled, then FXSAVE and FXRSTOR
cannot access these registers. It is therefore possible to check if XMM registers are
enabled, by trying to read and write these registers with FXSAVE and FXRSTOR. The
subroutines in www.agner.org/optimize/asmlib.zip use this method. These subroutines can
be called from assembly as well as from high-level languages, and provide an easy way of
detecting whether XMM registers can be used.

In order to verify that this detection method works correctly with all microprocessors, | first
checked various manuals. The 1999 version of Intel's software developer's manual says
about the FXRSTOR instruction: "The Streaming SIMD Extension fields in the save image
(XMMO-XMM7 and MXCSR) will not be loaded into the processor if the CR4.0OSFXSR bit is
not set." AMD's Programmer’s Manual says effectively the same. However, the 2003
version of Intel's manual says that this behavior is implementation dependent. In order to
clarify this, | contacted Intel Technical Support and got the reply, "If the OSFXSR bit in CR4
in not set, then XMMXx registers are not restored when FXRSTOR is executed". They further
confirmed that this is true for all versions of Intel microprocessors and all microcode
updates. | regard this as a guarantee from Intel that my detection method will work on all
Intel microprocessors. We can rely on the method working correctly on AMD processors as
well since the AMD manual is unambiguous on this question. It appears to be safe to rely on
this method working correctly on future microprocessors as well, because any micropro-
cessor that deviates from the above specification would introduce a security problem as well
as failing to run existing programs. Compatibility with existing programs is of great concern
to microprocessor producers.

The detection method recommended in Intel manuals has the drawback that it relies on the
ability of the compiler and the operating system to catch invalid opcode exceptions. A
Windows application, for example, using Intel's detection method would therefore have to be

135

http://www.agner.org/optimize/asmexamples.zip
http://www.agner.org/optimize/asmlib.zip

tested in all compatible operating systems, including various Windows emulators running
under a number of other operating systems. My detection method does not have this
problem because it is independent of compiler and operating system. My method has the
further advantage that it makes modular programming easier, because a module,
subroutine library, or DLL using XMM instructions can include the detection procedure so
that the problem of XMM support is of no concern to the calling program, which may even
be written in a different programming language. Some operating systems provide system
functions that tell which instruction set is supported, but the method mentioned above is
independent of the operating system.

It is easier to check for operating support for YMM registers. The following method is
described in "Intel Advanced Vector Extensions Programming Reference": Execute CPUI D
with eax = 1. Check that bit 27 and 28 in ecx are both 1 (OSXSAVE and AVX feature flags).
If so, then execute XGETBV with ecx = 0 to get the XFEATURE_ENABLED_MASK. Check
that bit 1 and 2 in eax are both set (XMM and YMM state support). If so, then it is safe to
use YMM registers.

The above discussion has relied on the following documents:

Intel application note AP-900: "ldentifying support for Streaming SIMD Extensions in the
Processor and Operating System". 1999.

Intel application note AP-485: "Intel Processor Identification and the CPUID Instruction”.
2002.

"Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference",
1999.

"|A-32 Intel Architecture Software Developer's Manual, Volume 2: Instruction Set
Reference", 2003.

"AMDG64 Architecture Programmer’s Manual, Volume 4: 128-Bit Media Instructions", 2003.

"Intel Advanced Vector Extensions Programming Reference", 2008, 2010.

16 Problematic Instructions

16.1 LEA instruction (all processors)

The LEA instruction is useful for many purposes because it can do a shift operation, two
additions, and a move in just one instruction. Example:

; Exanple 16.1a, LEA instruction
| ea eax, [ebx+8*ecx-1000]

is much faster than

Exanpl e 16. 1b
nov eax, ecxX
shl eax, 3
add eax, ebx
sub eax, 1000

A typical use of LEA is as a three-register addition: | ea eax, [ebx+ecx] . The LEA
instruction can also be used for doing an addition or shift without changing the flags.

136

The processors have no documented addressing mode with a scaled index register and
nothing else. Therefore, an instruction like | ea eax, [ebx*2] is actually coded as | ea

eax, [ebx*2+00000000H] with an immediate displacement of 4 bytes. The size of this
instruction can be reduced by writing | ea eax, [ebx+ebx] . If you happen to have a register
that is zero (like a loop counter after a loop) then you may use it as a base register to
reduce the code size:

Exanpl e 16.2, LEA instruction w thout base pointer
| ea eax, [ebx*4] ;7 bytes
| ea eax, [ecx+ebx*4] ; 3 bytes

The size of the base and index registers can be changed with an address size prefix. The
size of the destination register can be changed with an operand size prefix (See prefixes,
page 26). If the operand size is less than the address size then the result is truncated. If the
operand size is more than the address size then the result is zero-extended.

The shortest version of LEA in 64-bit mode has 32-bit operand size and 64-bit address size,
e.g. LEA EAX, [RBX+RCX] , see page 76. Use this version when the result is sure to be less
than 2%. Use the version with a 64-bit destination register for address calculation in 64-bit
mode when the address may be bigger than 2%,

LEA is slower than addition on some processors. The more complex forms of LEA with scale
factor and offset are slower than the simple form on some processors. See manual 4:
"Instruction tables" for details on each processor.

The preferred version in 32-bit mode has 32-bit operand size and 32-bit address size. LEA
with a 16-bit operand size is slow on AMD processors. LEA with a 16-bit address size in 32-
bit mode should be avoided because the decoding of the address size prefix is slow on
many processors.

LEA can also be used in 64-bit mode for loading a RIP-relative address. A RIP-relative
address cannot be combined with base or index registers.

16.2 INC and DEC

The | NC and DEC instructions do not modify the carry flag but they do modify the other
arithmetic flags. Writing to only part of the flags register costs an extra pop on P4 and P4E.
It can cause a partial flags stalls on some Intel processors if a subsequent instruction reads
the carry flag or all the flag bits. On all processors, it can cause a false dependence on the
carry flag from a previous instruction.

Use ADD and SUB when optimizing for speed. Use | NC and DEC when optimizing for size or
when no penalty is expected.

16.3 XCHG (all processors)

The XCHG register, [nenory] instruction is dangerous. This instruction always has an
implicit LOCK prefix which forces synchronization with other processors or cores. This
instruction is therefore very time consuming, and should always be avoided unless the lock
is intended.

The XCHG instruction with register operands may be useful when optimizing for size as
explained on page 72.

137

16.4 Shifts and rotates (P4)

Shifts and rotates on general purpose registers are slow on the P4. You may consider using
MMX or XMM registers instead or replacing left shifts by additions.

16.5 Rotates through carry (all processors)

RCR and RCL with CL or with a count different from one are slow on all processors and
should be avoided.

16.6 Bit test (all processors)

BT, BTC, BTR, and BTS instructions should preferably be replaced by instructions like TEST,
AND, OR, XOR, or shifts on older processors. Bit tests with a memory operand should be
avoided on Intel processors. BTC, BTR, and BTS use 2 pops on AMD processors. Bit test
instructions are useful when optimizing for size.

16.7 LAHF and SAHF (all processors)
LAHF is slow on P4 and P4E. Use SETcc instead for storing the value of a flag.

SAHF is slow on P4E and AMD processors. Use TEST instead for testing a bit in AH. Use
FCOM if available as a replacement for the sequence FCOVI / FNSTSW AX / SAHF.

LAHF and SAHF are not available in 64 bit mode on some early 64-bit Intel processors.

16.8 Integer multiplication (all processors)

An integer multiplication takes from 3 to 14 clock cycles, depending on the processor. It is
therefore often advantageous to replace a multiplication by a constant with a combination of
other instructions such as SHL, ADD, SUB, and LEA. For example | MJL EAX, 5 can be
replaced by LEA EAX, [EAX+4* EAX] .

16.9 Division (all processors)

Both integer division and floating point division are quite time consuming on all processors.
Various methods for reducing the number of divisions are explained in manual 1:
"Optimizing software in C++". Several methods to improve code that contains division are
discussed below.

Integer division by a power of 2 (all processors)

Integer division by a power of two can be done by shifting right. Dividing an unsigned
integer by 2":

Exanpl e 16.3. Divide unsigned integer by 2~N
shr eax, N

Dividing a signed integer by 2":

; Exanple 16.4. Divide signed integer by 2N
cdq

and edx, (1 shl n) - 1 ; (O shr edx, 32-n)
add eax, edx

sar eax, n

Obviously, you should prefer the unsigned version if the dividend is certain to be non-
negative.

138

Integer division by a constant (all processors)

Dividing by a constant can be done by multiplying with the reciprocal. A useful algorithm for
integer division by a constant is as follows:

To calculate the unsigned integer division g = x/ d in integers with a word size of w bits, you
first calculate the reciprocal of the divisor, f = 2"/ d, where r defines the position of the binary
decimal point (radix point). Then multiply x with f and shift right r positions. The maximum
value of r is w+b, where b is the number of binary digits in d minus 1. (b is the highest
integer for which 2° < d). Use r = w+b to cover the maximum range for the value of the
dividend x.

This method needs some refinement in order to compensate for rounding errors. The
following algorithm will give you the correct result for unsigned integer division with
truncation, i.e. the same result as the DI V instruction:

b = (the number of significant bits in d) - 1

r=w+b

f=2"/d

If f is an integer then d is a power of 2: go to case A.

If f is not an integer, then check if the fractional part of fis < 0.5
If the fractional part of f < 0.5: go to case B.

If the fractional part of f > 0.5: go to case C.

case A (d = 2b):
result =xSHR b

case B (fractional part of f < 0.5):
round f down to nearest integer
result = ((x+1) * f) SHRr

case C (fractional part of f > 0.5):
round f up to nearest integer
result = (x*f) SHRr

Example:

Assume that you want to divide by 5.
5=101B.

w = 32.

b = (number of significant binary digits) - 1 = 2
r=232+2=34

f=2%/5=3435973836.8 = 0CCCCCCCC.CCC...(hexadecimal)

The fractional part is greater than a half: use case C.
Round f up to 0CCCCCCCDH.

The following code divides EAX by 5 and returns the result in EDX:

Exanpl e 16. 5a. Divide unsigned integer by 5
nov edx, 0CCCCCCCDH
mul edx
shr edx, 2

After the multiplication, EDX contains the product shifted right 32 places. Since r = 34 you
have to shift 2 more places to get the result. To divide by 10, just change the last line to SHR
EDX, 3.

In case B we would have:

139

; Exanpl e 16.5b. Divide unsigned integer, case B
add eax, 1

nov edx, f

nul edx

shr edx, b

This code works for all values of x except OFFFFFFFFH which gives zero because of
overflow in the ADD EAX, 1 instruction. If x = OFFFFFFFFH is possible, then change the code
to:

; Exanple 16.5c. Divide unsigned integer, case B, check for overfl ow

nov edx, f
add eax, 1
jc DOVERFL
mul edx
DOVERFL: shr edx, b

If the value of x is limited, then you may use a lower value of r, i.e. fewer digits. There can
be several reasons for using a lower value of r:

* You may setr =w= 32 to avoid the SHR EDX, b in the end.

* You may set r = 16+b and use a multiplication instruction that gives a 32-bit result
rather than 64 bits. This will free the EDX register:

Exanmpl e 16.5d. Divide unsigned integer by 5, linmited range
i mul eax, OCCCDH
shr eax, 18

¢ You may choose a value of r that gives case C rather than case B in order to avoid
the ADD EAX, 1 instruction

The maximum value for x in these cases is at least 2"°-1, sometimes higher. You have to do
a systematic test if you want to know the exact maximum value of x for which the code
works correctly.

You may want to replace the slow multiplication instruction with faster instructions as
explained on page 138.

The following example divides EAX by 10 and returns the result in EAX. | have chosen r=17
rather than 19 because it happens to give code that is easier to optimize, and covers the
same range for x. f = 2'" / 10 = 3333H, case B: q = (x+1)*3333H:

Exanmpl e 16. 5e. Divide unsigned integer by 10, limted range
| ea ebx, [eax+2*eax+3]
| ea ecx, [eax+2*eax+3]
shl ebx, 4
nov eax, ecx
shl ecx, 8
add eax, ebx
shl ebx, 8
add eax, ecx
add eax, ebx
shr eax, 17

A systematic test shows that this code works correctly for all x < 10004H.

The division method can also be used for vector operands. Example 16.5f divides eight
unsigned 16-bit integers by 10:

140

; Exanple 16.5f. Divide vector of unsigned integers by 10
.data

align 16

RECI PDI V DW 8 dup (OCCCDH) ; Vector of reciprocal divisor

. code
prmul huw xm®O, RECI PDI V
psrlw xm0, 3

This method for division by a constant has been invented independently by several people.
The present version was invented by Terje Mathisen, Norway (unpublished). A method for
signed division and a further description of the math can be found in the book Hacker's
Delight, by Henry S. Warren, Jr.

Repeated integer division by the same value (all processors)

If the divisor is not known at assembly time, but you are dividing repeatedly with the same
divisor, then you may use the same method as above. The code has to distinguish between
case A, B and C and calculate f before doing the divisions.

The code that follows shows how to do multiple divisions with the same divisor (unsigned
division with truncation). First call SET_DI VI SOR to specify the divisor and calculate the
reciprocal, then call DI VI DE_FI XED for each value to divide by the same divisor.

Exanpl e 16.6, repeated integer division with sane divisor

. DATA
RECI PROCAL_DI VI SOR DD ? ; rounded reciprocal divisor
CORRECTI ON DD ? ; case A -1, case B: 1, case C O
BSHI FT DD ? ; nunber of bits in divisor - 1
. CODE
SET_DI VI SOR PROC NEAR ; divisor in EAX
push ebx
nov ebx, eax
bsr ecx, eax ; b = nunber of bits in divisor - 1
nov edx, 1
jz ERROR ;error: divisor is zero
shl edx, cl ; 2"b
nov [BSHI FT], ecx ; save b
cnp eax, edx
nov eax, O
je short CASE A ; divisor is a power of 2
di v ebx ; 2°N(32+b) / d
shr ebx, 1 ; divisor / 2
Xor ecx, ecx
cnp edx, ebx ; conmpare renai nder with divisor/2
setbe cl ; 1 if case b
nov [CORRECTI ON], ecx ; correction for rounding errors
xor ecx, 1
add eax, ecx ; add 1 if case c
nov [RECI PROCAL_DI VI SOR], eax ; rounded reciprocal divisor
pop ebx
ret
CASE_A: nmov [CORRECTION], -1 ; remenber that we have case a
pop ebx
ret

SET_DI VI SOR ENDP

DI VI DE_FI XED PROC NEAR ; dividend in EAX, result in EAX
nov edx, [CORRECTI ON|
nmov ecx, [BSHI FT]
t est edx, edx
js DSHI FT ; divisor is power of 2

141

add eax, edx ; correct for rounding error

jc DOVERFL ; correct for overfl ow
mul [RECI PROCAL_DI VI SOR] ; multiply w reciprocal divisor
nov eax, edx

DSHI FT: shr eax, cl ; adjust for nunber of bits

ret

DOVERFL: nmov eax, [RECIPROCAL_DIVISOR] ; dividend = Offffffffh
shr eax, cl ; do division by shifting
ret

Dl VI DE_FI XED ENDP

This code gives the same result as the DI V instruction for 0 < x < 2%, 0 <d < 2%
The line j ¢ DOVERFL and its target are not needed if you are certain that x < OFFFFFFFFH.

If powers of 2 occur so seldom that it is not worth optimizing for them, then you may leave
out the jump to DSHI FT and instead do a multiplication with CORRECTI ON = 0O for case A.

Floating point division (all processors)

Two or more floating point divisions can be combined into one, using the method described
in manual 1: "Optimizing software in C++".

The time it takes to make a floating point division depends on the precision. When floating
point registers are used, you can make division faster by specifying a lower precision in the
floating point control word. This also speeds up the FSQRT instruction, but not any other
instructions. When XMM registers are used, you don't have to change any control word.
Just use single-precision instructions if your application allows this.

It is not possible to do a floating point division and an integer division at the same time
because they are using the same execution unit on most processors.

Using reciprocal instruction for fast division (processors with SSE)

On processors with the SSE instruction set, you can use the fast reciprocal instruction
RCPSS or RCPPS on the divisor and then multiply with the dividend. However, the precision is
only 12 bits. You can increase the precision to 23 bits by using the Newton-Raphson
method described in Intel's application note AP-803:

x0
x1

rcpss(d);
x0* (2 -d*x0) =2*x0-d=* x0* x0

where x0 is the first approximation to the reciprocal of the divisor d, and x1 is a better
approximation. You must use this formula before multiplying with the dividend.

Exampl e 16.7, fast division, single precision (SSE)

nmovaps xmmil, [divisors] ; load divisors
rcpps Xm0, xnmi ; approxi mate reciproca
nul ps xnmmil, xnmmD ; newt on-raphson formul a

nmul ps xnmmil, xnmD
addps xnm0, xmmD
subps xnm0, xmmil
nmul ps xmD, [dividends] ; results in xmmD

This makes four divisions in approximately 23 clock cycles on a PM with a precision of 23
bits. Increasing the precision further by repeating the Newton-Raphson formula with double
precision is possible, but not very advantageous.

If you want to use this method for integer divisions then you have to check for rounding
errors. The following code makes four integer divisions with truncation on packed word size

142

integers in approximately 39 clock cycles on the PM. It gives exactly the same results as the
DI V instruction for 0 < dividend < 7FFFFH and 0 < divisor < 7FFFFH:

; Exanple 16.8, integer division with packed 16-bit words (SSE2):
conput e QUOTI ENTS = DI VI DENDS / DI VI SORS

novq xmml, [DI VI SORS] ; load four divisors

novq xm®2, [DIVIDENDS] ; |oad four dividends

pxor xmD, xmmD ; tenporary O

punpckl wd xmmi, xm0 ; convert divisors to dwords
punpckl wd xm®2, xmmD ; convert dividends to dwords
cvtdg2ps xmil, xnml ; convert divisors to floats
cvtdg2ps xmmR2, xm® ; convert dividends to floats

rcpps Xm0, xnmil ; approxi mate reciprocal of divisors
mul ps xmml, xnmmD ; inmprove precision wth.

mul ps xmml, xmm0 ; newt on-raphson met hod

addps xnm0, xmmD

subps xm©O, xmml ; reciprocal divisors (23 bit precision)
nmul ps Xm0, xnmme ; multiply with dividends

cvttps2dg xm®D, xnmD ; truncate result of division
packssdw xm0, xmmD ; convert quotients to word size
novq xmml, [DI VI SORS] ; load divisors again

novq xm®2, [DIVIDENDS] ; |oad dividends again

psubw xmmR, xnmil ; dividends - divisors

prul | w xnmmil, xnmmD ; divisors * quotients

pcnpgtw xmmil, xmP ; -1 if quotient not too snal
pcnpegqw xmP, XxmP ; make integer -1's

pxor xnmmil, xnmme ; -1 if quotient too snal

psubw xm©O, xmml ; correct quotient

novq [QUOTI ENTS], xmmD ; save the four corrected quotients

This code checks if the result is too small and makes the appropriate correction. It is not
necessary to check if the result is too big.

16.10 String instructions (all processors)

String instructions without a repeat prefix are too slow and should be replaced by simpler
instructions. The same applies to LOOP on all processors and to JECXZ on some processors.

REP MOVSD and REP STCSD are quite fast if the repeat count is not too small. Always use
the largest word size possible (DWORD in 32-bit mode, QAORD in 64-bit mode), and make sure
that both source and destination are aligned by the word size. In many cases, however, it is
faster to use XMM registers. Moving data in XMM registers is faster than REP MOvSD and
REP STOSD in most cases, especially on older processors. See page 156 for details.

Note that while the REP MOVS instruction writes a word to the destination, it reads the next
word from the source in the same clock cycle. You can have a cache bank conflict if bit 2-4
are the same in these two addresses on P2 and P3. In other words, you will get a penalty of
one clock extra per iteration if ESI +WORDS| ZE-EDI is divisible by 32. The easiest way to
avoid cache bank conflicts is to align both source and destination by 8. Never use MOVSB or
MOVSWin optimized code, not even in 16-bit mode.

On many processors, REP MOVS and REP STOs can perform fast by moving 16 bytes or an
entire cache line at a time. This happens only when certain conditions are met. Depending
on the processor, the conditions for fast string instructions are, typically, that the count must
be high, both source and destination must be aligned, the direction must be forward, the
distance between source and destination must be at least the cache line size, and the
memory type for both source and destination must be either write-back or write-combining
(you can normally assume the latter condition is met).

143

Under these conditions, the speed is typically as high as you can obtain with vector register
moves.

While the string instructions can be quite convenient, it must be emphasized that other
solutions are faster in many cases. If the above conditions for fast move are not met then
there is a lot to gain by using other methods. See page 156 for alternatives to REP MOVS.

REP LOADS, REP SCAS, and REP CMPS take more time per iteration than simple loops. See
page 132 for alternatives to REPNE SCASB.

16.11 WAIT instruction (all processors)

You can often increase speed by omitting the WAI T instruction (also known as FWAI T). The
WAI T instruction has three functions:

A. The old 8087 processor requires a WAl T before every floating point instruction to make
sure the coprocessor is ready to receive it.

B. WAl T is used for coordinating memory access between the floating point unit and the
integer unit. Examples:

; Exanple 16.9. Uses of WAIT:
B1: fistp [menB2]
wai t ; wait for FPUto wite before..
nov eax,[nmenB82] ; reading the result with the integer unit

B2: fild [menmB2]
wai t ; wait for FPU to read val ue..
nmov [nenB2],eax ; before overwiting it with integer unit

B3: fld gqword ptr [ESP]
wai t ; prevent an accidental interrupt from.
add esp, 8 ; overwriting value on stack

C. WAl T is sometimes used to check for exceptions. It will generate an interrupt if an
unmasked exception bit in the floating point status word has been set by a preceding
floating point instruction.

Regarding A:
The functionality in point A is never needed on any other processors than the old 8087.

Unless you want your 16-bit code to be compatible with the 8087, you should tell your
assembler not to put in these WAI T's by specifying a higher processor. An 8087 floating
point emulator also inserts WAI T instructions. You should therefore tell your assembler not to
generate emulation code unless you need it.

Regarding B:
WAI T instructions to coordinate memory access are definitely needed on the 8087 and

80287 but not on the Pentiums. It is not quite clear whether it is needed on the 80387 and
80486. | have made several tests on these Intel processors and not been able to provoke
any error by omitting the WAI T on any 32-bit Intel processor, although Intel manuals say that
the WAI T is needed for this purpose except after FNSTSwand FNSTCW Omitting WAI T
instructions for coordinating memory access is not 100 % safe, even when writing 32-bit
code, because the code may be able to run on the very rare combination of a 80386 main
processor with a 287 coprocessor, which requires the WAI T. Also, | have no information on
non-Intel processors, and | have not tested all possible hardware and software
combinations, so there may be other situations where the WAI T is needed.

144

If you want to be certain that your code will work on even the oldest 32-bit processors then |
would recommend that you include the WAI T here in order to be safe. If rare and obsolete
hardware platforms such as the combination of 80386 and 80287 can be ruled out, then you
may omit the WAI T.

Regarding C:
The assembler automatically inserts a WAI T for this purpose before the following

instructions: FCLEX, FI NI T, FSAVE, FSTCW FSTENV, FSTSW You can omit the WAI T by writing
FNCLEX, etc. My tests show that the WAI T is unnecessary in most cases because these
instructions without WAI T will still generate an interrupt on exceptions except for FNCLEX and
FNI NI T on the 80387. (There is some inconsistency about whether the | RET from the
interrupt points to the FN. . instruction or to the next instruction).

Almost all other floating point instructions will also generate an interrupt if a previous floating
point instruction has set an unmasked exception bit, so the exception is likely to be detected
sooner or later anyway. You may insert a WAl T after the last floating point instruction in your
program to be sure to catch all exceptions.

You may still need the WAI T if you want to know exactly where an exception occurred in
order to be able to recover from the situation. Consider, for example, the code under B3
above: If you want to be able to recover from an exception generated by the FLD here, then
you need the WAI T because an interrupt after ADD ESP, 8 might overwrite the value to load.
FNOP may be faster than WAI T on some processors and serve the same purpose.

16.12 FCOM + FSTSW AX (all processors)

The FNSTSWinstruction is very slow on all processors. Most processors have FCOM
instructions to avoid the slow FNSTSW Using FCOM instead of the common sequence FCOVI/
FNSTSWAX / SAHF will save 4 - 8 clock cycles. You should therefore use FCOM to avoid
FNSTSWwherever possible, even in cases where it costs some extra code.

On P1 and PMMX processors, which don't have FCOM instructions, the usual way of doing
floating point comparisons is:

; Exanpl e 16. 10a.

fld [a]

fconp [Db]

fstsw ax

sahf

jb ASnal | er ThanB

You may improve this code by using FNSTSW AX rather than FSTSW AX and test AH directly
rather than using the non-pairable SAHF:

Exanpl e 16. 10b.

fld [a]

fconmp [Db]

fnstsw ax

shr ah, 1

jc ASmal | er ThanB

Testing for zero or equality:

; Exanpl e 16. 10c.
ftst

fnstsw ax
and ah, 40H ; Don't use TEST instruction, it's not pairable
j nz | sZero ; (the zero flag is inverted!)

145

Test if greater:

Exanpl e 16. 10d.

fld [a]

fconmp [Db]

fnstsw ax

and ah, 41H

jz AG eat er ThanB

On the P1 and PMMX, the FNSTSWinstruction takes 2 clocks, but it is delayed for an
additional 4 clocks after any floating point instruction because it is waiting for the status
word to retire from the pipeline. You may fill this gap with integer instructions.

It is sometimes faster to use integer instructions for comparing floating point values, as
described on page 153 and 155.

16.13 FPREM (all processors)

The FPREMand FPREML instructions are slow on all processors. You may replace it by the

following algorithm: Multiply by the reciprocal divisor, get the fractional part by subtracting
the truncated value, and then multiply by the divisor. (See page 152 on how to truncate on
processors that don't have truncate instructions).

Some documents say that these instructions may give incomplete reductions and that it is
therefore necessary to repeat the FPREMor FPREML instruction until the reduction is
complete. | have tested this on several processors beginning with the old 8087 and | have
found no situation where a repetition of the FPREMor FPREML was needed.

16.14 FRNDINT (all processors)
This instruction is slow on all processors. Replace it by:

; Exanple 16.11
fistp qword ptr [TEMP]
fild qword ptr [TEMP]

This code is faster despite a possible penalty for attempting to read from [TEMP] before the
write is finished. It is recommended to put other instructions in between in order to avoid this
penalty. See page 152 on how to truncate on processors that don't have truncate
instructions. On processors with SSE instructions, use the conversion instructions such as
CVTSS2SI and CVTTSS2SI .

16.15 FSCALE and exponential function (all processors)

FSCALE is slow on all processors. Computing integer powers of 2 can be done much faster
by inserting the desired power in the exponent field of the floating point number. To
calculate 2", where N is a signed integer, select from the examples below the one that fits
your range of N:

For [N| < 27-1 you can use single precision:

Exanpl e 16. 12a.

nov eax, [N

shl eax, 23

add eax, 3f800000h

nov dword ptr [TEMP], eax
fld dword ptr [TEMP]

146

For |N| < 2'°-1 you can use double precision:

Exanmpl e 16. 12b.

nov eax, [N

shl eax, 20

add eax, 3ff00000h

nov dword ptr [TEMP], O

nov dword ptr [TEMP+4], eax
fld gword ptr [TEMP]

For |N| < 2"-1 use long double precision:

; Exanple 16. 12c.

nov eax, [N

add eax, 00003fffh

nov dword ptr [TEMP], 0

nov dword ptr [TEMP+4], 80000000h
nov dword ptr [TEMP+8], eax

fld tbyte ptr [TEMP]

On processors with SSE2 instructions, you can make these operations in XMM registers
without the need for a memory intermediate (see page 154).

FSCALE is often used in the calculation of exponential functions. The following code shows
an exponential function without the slow FRNDI NT and FSCALE instructions:

; Exanple 16.13. Exponential function

; extern "C' long double exp (double x);
_exp PRCC NEAR

PUBLI C _exp

fldl2e
fld gword ptr [esp+4] ;X
f mul 7z = x*log2(e)
fist dword ptr [esp+4] ; round(z)
sub esp, 12
nov dword ptr [esp], O
nov dword ptr [esp+4], 80000000h
fisub dword ptr [esp+16] ; Z - round(z)
nov eax, [esp+16]
add eax, 3fffh
nov [esp+8], eax
jle short UNDERFLOW
cnp eax, 8000h
j ge short OVERFLOW
f 2xml
fldl
fadd ; 2"(z-round(z))
fld tbyte ptr [esp] ; 2"(round(z))
add esp, 12
f mul ; 2"z = ex
ret

UNDERFLOW
fstp st
fldz ; return O
add esp, 12
ret

OVERFLOW
push 07f 800000h ; +infinity
fstp st
fld dword ptr [esp] ; return infinity
add esp, 16

ret
147

_exp ENDP

16.16 FPTAN (all processors)

According to the manuals, FPTAN returns two values, X and Y, and leaves it to the
programmer to divide Y with X to get the result; but in fact it always returns 1 in X so you can
save the division. My tests show that on all 32-bit Intel processors with floating point unit or
coprocessor, FPTAN always returns 1 in X regardless of the argument. If you want to be
absolutely sure that your code will run correctly on all processors, then you may test if X is
1, which is faster than dividing with X. The Y value may be very high, but never infinity, so
you don't have to test if Y contains a valid number if you know that the argument is valid.

16.17 FSQRT (SSE processors)

A fast way of calculating an approximate square root on processors with SSE is to multiply
the reciprocal square root of x by x:

sqrt(x) = x * rsqrt(x)

The instruction RSORTSS or RSQRTPS gives the reciprocal square root with a precision of 12
bits. You can improve the precision to 23 bits by using the Newton-Raphson formula
described in Intel's application note AP-803:

x0
x1

rsqrtss(a)
0.5 * x0 * (3 - (a* x0) * x0)

where x0 is the first approximation to the reciprocal square root of a, and x1 is a better
approximation. The order of evaluation is important. You must use this formula before
multiplying with a to get the square root.

16.18 FLDCW (Most Intel processors)

Many processors have a serious stall after the FLDCWinstruction if followed by any floating
point instruction which reads the control word (which almost all floating point instructions
do).

When C or C++ code is compiled, it often generates a lot of FLDCwinstructions because
conversion of floating point numbers to integers is done with truncation while other floating
point instructions use rounding. After translation to assembly, you can improve this code by
using rounding instead of truncation where possible, or by moving the FLDCwout of a loop
where truncation is needed inside the loop.

On the P4, this stall is even longer, approximately 143 clocks. But the P4 has made a
special case out of the situation where the control word is alternating between two different
values. This is the typical case in C++ programs where the control word is changed to
specify truncation when a floating point number is converted to integer, and changed back
to rounding after this conversion. The latency for FLDCwis 3 when the new value loaded is
the same as the value of the control word before the preceding FLDCW The latency is still
143, however, when loading the same value into the control word as it already has, if this is
not the same as the value it had one time earlier.

See page 152 on how to convert floating point numbers to integers without changing the

control word. On processors with SSE, use truncation instructions such as CVTTSS2S|
instead.

148

17 Special topics

17.1 XMM versus floating point registers
Processors with the SSE instruction set can do single precision floating point calculations in

XMM registers. Processors with the SSE2 instruction set can also do double precision
calculations in XMM registers. Floating point calculations are approximately equally fast in
XMM registers and the old floating point stack registers. The decision of whether to use the
floating point stack registers ST(0) - ST(7) or XMM registers depends on the following
factors.

Advantages of using ST() registers:

* Compatible with old processors without SSE or SSE2.

e Compatible with old operating systems without XMM support.

» Supports long double precision.

¢ Intermediate results are calculated with long double precision.

» Precision conversions are free in the sense that they require no extra instructions
and take no extra time. You may use ST() registers for expressions where operands
have mixed precision.

» Mathematical functions such as logarithms and trigonometric functions are
supported by hardware instructions. These functions are useful when optimizing for
size, but not necessarily faster than library functions using XMM registers.

+ Conversions to and from decimal numbers can use the FBLD and FBSTP instructions
when optimizing for size.

» Floating point instructions using ST() registers are smaller than the corresponding
instructions using XMM registers. For example, FADD ST(0), ST(1) is 2 bytes,
while ADDSD XMVD, XML is 4 bytes.

Advantages of using XMM or YMM registers:

e Can do multiple operations with a single vector instruction.

« Avoids the need to use FXCH for getting the desired register to the top of the stack.

* No need to clean up the register stack after use.

» Can be used together with MMX instructions.

* No need for memory intermediates when converting between integers and floating
point numbers.

e 64-bit systems have 16 XMM/YMM registers, but only 8 ST() registers.

» ST() registers cannot be used in device drivers in 64-bit Windows.

e The instruction set for ST() registers is no longer developed. The instructions will
probably still be supported for many years for the sake of backwards compatibility,

but the instructions may work less efficiently in future processors.

149

17.2 MMX versus XMM registers

Integer vector instructions can use either the 64-bit MMX registers or the 128-bit XMM
registers in processors with SSE2.

Advantages of using MMX registers:
e Compatible with older microprocessors since the PMMX.
» Compatible with old operating systems without XMM support.
* No need for data alignment.

Advantages of using XMM registers:

» The number of elements per vector is doubled in XMM registers as compared to
MMX registers.

« MMX registers cannot be used together with ST() registers.

» A series of MMX instructions must end with EMMS.

e 64-bit systems have 16 XMM registers, but only 8 MMX registers.

* MMX registers cannot be used in device drivers in 64-bit Windows.

e The instruction set for MMX registers is no longer developed and is going out of use.

The MMX registers will probably still be supported in many years for reason of
backwards compatibility.

17.3 XMM versus YMM registers
Floating point vector instructions can use the 128-bit XMM registers or their 256-bit

extension named YMM registers when the AVX instruction set is available. See page 127
for details. Advantages of using the AVX instruction set and YMM registers:
» Double vector size for floating point operations
* Non-destructive 3-operand version of all XMM and YMM instructions
Advantages of using XMM registers:
e Compatible with older processors
» There is a penalty for switching between VEX instructions and XMM instructions
without VEX prefix, see page 128. The programmer may inadvertently mix VEX and
non-VEX instructions.
* YMM registers cannot be used in device drivers without saving everything with

XSAVE / XRESTOR., see page 129.

17.4 Freeing floating point registers (all processors)

You have to free all used floating point stack registers before exiting a subroutine, except
for any register used for the result.

150

The fastest way of freeing one register is FSTP ST. To free two registers you may use either
FCOWPP or twice FSTP ST, whichever fits best into the decoding sequence or port load.

It is not recommended to use FFREE.

17.5 Transitions between floating point and MMX instructions

It is not possible to use 64-bit MMX registers and 80-bit floating point ST() registers in the
same part of the code. You must issue an EMVS instruction after the last instruction that uses
MMX registers if there is a possibility that later code uses floating point registers. You may
avoid this problem by using 128-bit XMM registers instead.

On PMMX there is a high penalty for switching between floating point and MMX instructions.
The first floating point instruction after an EMVS takes approximately 58 clocks extra, and the
first MMX instruction after a floating point instruction takes approximately 38 clocks extra.

On processors with out-of-order execution there is no such penalty.

17.6 Converting from floating point to integer (All processors)

All conversions between floating point registers and integer registers must go via a memory
location:

; Exanple 17.1.
fistp dword ptr [TEMP]
nov eax, [TEMP]

On many processors, and especially the P4, this code is likely to have a penalty for
attempting to read from [TEMP] before the write to [TEMP] is finished. It doesn't help to put
in a WAI T. It is recommended that you put in other instructions between the write to [TEMP]
and the read from [TEMP] if possible in order to avoid this penalty. This applies to all the
examples that follow.

The specifications for the C and C++ language requires that conversion from floating point
numbers to integers use truncation rather than rounding. The method used by most C
libraries is to change the floating point control word to indicate truncation before using an

FI STP instruction, and changing it back again afterwards. This method is very slow on all
processors. On many processors, the floating point control word cannot be renamed, so all
subsequent floating point instructions must wait for the FLDCwinstruction to retire. See page
148.

On processors with SSE or SSE2 instructions you can avoid all these problems by using
XMViregisters instead of floating point registers and use the CVT. . instructions to avoid the
memory intermediate.

Whenever you have a conversion from a floating point register to an integer register, you
should think of whether you can use rounding to nearest integer instead of truncation.

If you need truncation inside a loop then you should change the control word only outside
the loop if the rest of the floating point instructions in the loop can work correctly in
truncation mode.

You may use various tricks for truncating without changing the control word, as illustrated in
the examples below. These examples presume that the control word is set to default, i.e.
rounding to nearest or even.

Exanpl e 17.2a. Rounding to nearest or even:

151

; extern "C' int round (double x);
_round PROC NEAR ; (32 bit node)
PUBLI C _round
fld gword ptr [esp+4]
fistp dword ptr [esp+4]
nov eax, dword ptr [esp+4]
ret
_round ENDP

; Exanple 17.2b. Truncation towards zero

; extern "C' int truncate (double Xx);
_truncate PRCC NEAR ; (32 bit node)
PUBLIC _truncate
fld gword ptr [esp+4] ;X
sub esp, 12 ; space for |ocal variables
fist dword ptr [esp] ; rounded val ue
f st dword ptr [esp+4] ; float val ue
fisub dword ptr [esp] ; subtract rounded val ue
fstp dword ptr [esp+8] ; difference
pop eax ; rounded val ue
pop ecx ; float val ue
pop edx ; difference (float)
t est ecx, ecx ; test sign of x
js short NEGATI VE
add edx, 7FFFFFFFH ; produce carry if difference < -0
sbb eax, O ; subtract 1 if x-round(x) < -0
ret
NEGATI VE:
xor ecx, ecx
t est edx, edx
setg cl ;1 if difference > 0
add eax, ecx ; add 1 if x-round(x) >0
ret

_truncate ENDP

; Exanple 17.2c. Truncation towards mnus infinity:

; extern "C' int ifloor (double x);
_ifloor PROC NEAR ; (32 bit node)
PUBLIC _ifl oor
fld gword ptr [esp+4] ;X
sub esp, 8 ; space for |ocal variables
fist dword ptr [esp] ; rounded val ue
fisub dword ptr [esp] ; subtract rounded val ue
fstp dword ptr [esp+4] ; difference
pop eax ; rounded val ue
pop edx ; difference (float)
add edx, 7FFFFFFFH ; produce carry if difference < -0
sbb eax, O ; subtract 1 if x-round(x) < -0
ret
_ifl oor ENDP

These procedures work for -2%' < x < 2*-1. They do not check for overflow or NAN's.

17.7 Using integer instructions for floating point operations

Integer instructions are generally faster than floating point instructions, so it is often
advantageous to use integer instructions for doing simple floating point operations. The
most obvious example is moving data. For example

; Exanple 17. 3a.
fld gword ptr
fstp gword ptr

Movi ng floating point data
[esi]
[edi]

152

can be replaced by:

Exampl e 17.3b
nov eax, [esi]
nov ebx, [esi +4]
nov [edi], eax
nov [edi +4], ebx

or:
; Exanple 17.3c

novg nmO, [esi]
novqg [edi], nmD

In 64-bit mode, use:
Exampl e 17. 3d

nov rax, [rsi]
nov [rdi],rax

Many other manipulations are possible if you know how floating point numbers are
represented in binary format. See the chapter "Using integer operations for manipulating
floating point variables" in manual 1: "Optimizing software in C++".

The bit positions are shown in this table:

precision mantissa always 1 exponent sign

single (32 bits) bit 0 - 22 bit 23 - 30 bit 31
double (64 bits) bit 0 - 51 bit 52 - 62 bit 63
long double (80 bits) | bit 0 - 62 bit 63 bit 64 - 78 bit 79

Table 17.1. Floating point formats

From this table we can find that the value 1.0 is represented as 3F80,0000H in single
precision format, 3FF0,0000,0000,0000H in double precision, and
3FFF,8000,0000,0000,0000H in long double precision.

It is possible to generate simple floating point constants without using data in memory as
explained on page 121.

Testing if a floating point value is zero

To test if a floating point number is zero, we have to test all bits except the sign bit, which
may be either 0 or 1. For example:

; Exanple 17.4a. Testing floating point value for zero
fld dword ptr [ebx]
ftst

f nst sw ax
and ah, 40h
j nz | sZero

can be replaced by

Exanmpl e 17.4b. Testing floating point value for zero

nov eax, [ebx]
add eax, eax
jz I sZero

153

where the ADD EAX, EAX shifts out the sign bit. Double precision floats have 63 bits to test,
but if denormal numbers can be ruled out, then you can be certain that the value is zero if
the exponent bits are all zero. Example:

; Exanple 17.4c. Testing double value for zero
fld gword ptr [ebx]
ftst

f nst sw ax
and ah, 40h
jnz I sZero

can be replaced by

; Exanple 17.4d. Testing double value for zero

nov eax, [ebx+4]
add eax, eax
jz | sZero

Manipulating the sign bit

A floating point number is negative if the sign bit is set and at least one other bit is set.
Example (single precision):

; Exanple 17.5. Testing floating point value for negative

nov eax, [Number ToTest]
cnp eax, 80000000H
ja | sNegat i ve

You can change the sign of a floating point number simply by flipping the sign bit. This is
useful when XMM registers are used, because there is no XMM change sign instruction.
Example:

Exanmpl e 17.6. Change sign of four single-precision floats in xmD

cnpeqd xmmil, xmil ; generate all 1's
pslld xnml, 31 ; 1 in the leftnost bit of each dword only
xorps xmD, xnmil ; change sign of xmD

You can get the absolute value of a floating point number by AND'ing out the sign bit:

Example 17.7. Absolute value of four single-precision floats in xnmD

cnpeqd xmmil, xmil ; generate all 1's
psrid xmm, 1 ; 1 in all but the leftrmost bit of each dword
andps xmD , xml ; set sign bits to O

You can extract the sign bit of a floating point number:

; Exanple 17.8. Generate a bit-mask if single-precision floats in
xnmD are negative or -0.0
psrad xmmD, 31 ; copy sign bit into all bit positions

Manipulating the exponent
You can multiply a non-zero number by a power of 2 by simply adding to the exponent:

; Exanple 17.9. Multiply vector by power of 2

nmovaps xm0, [X] ; four single-precision floats
novdga xmmil, [n] ; four 32-bit positive integers
psl|d xmml, 23 ; shift integers into exponent field

paddd xmD, xnmml ; X * 27n

Likewise, you can divide by a power of 2 by subtracting from the exponent. Note that this
code does not work if X is zero or if overflow or underflow is possible.

154

Manipulating the mantissa

You can convert an integer to a floating point number in an interval of length 1.0 by putting
bits into the mantissa field. The following code computes x = n/ 2%, where n in an unsigned
integer in the interval 0 < n < 2%, and the resulting x is in the interval 0 < x < 1.0.

Exampl e 17.10. Convert bits to value between 0 and 1

. data

one dq 1.0

X dq ?

n dd ?

. code

nmovsd xnmD, [one] ; 1.0, double precision

novd xmil, [n] ; n, 32-bit unsigned integer
psllg xnml, 20 ; align nleft in mantissa field
or pd xmml, xnmm0 ; combi ne manti ssa and exponent
subsd xmmi, xnmD ; subtract 1.0

movsd [x], xmml ; store result

In the above code, the exponent from 1.0 is combined with a mantissa containing the bits of
n. This gives a double-precision value in the interval 1.0 < x < 2.0. The SUBSD instruction
subtracts 1.0 to get x into the desired interval. This is useful for random number generators.

Comparing numbers

Thanks to the fact that the exponent is stored in the biased format and to the left of the
mantissa, it is possible to use integer instructions for comparing positive floating point
numbers. Example (single precision):

Exanmpl e 17.11a. Conpare single precision float nunbers

fld [a]

fconmp [Db]

fnstsw ax

and ah, 1

j nz ASmal | er ThanB

can be replaced by:

; Exanple 17.11b. Conpare single precision float numbers
nov eax, [a]

nov ebx, [Db]

cnp eax, ebx

jb ASmal | er ThanB

This method works only if you are certain that none of the numbers have the sign bit set.
You may compare absolute values by shifting out the sign bit of both numbers. For double-
precision numbers, you can make an approximate comparison by comparing the upper 32
bits using integer instructions.

17.8 Using floating point instructions for integer operations

While there are no problems using integer instructions for moving floating point data, it is not
always safe to use floating point instructions for moving integer data. For example, you may
be tempted to use FLD QAORD PTR [ESI] / FSTP QWORD PTR [EDI] to move 8 bytes at a
time. However, this method may fail if the data do not represent valid floating point
numbers. The FLD instruction may generate an exception and it may even change the
value of the data. If you want your code to be compatible with processors that don't have
MMX and XMM registers then you can only use the slower FI LD and FI STP for moving 8
bytes at a time.

155

However, some floating point instructions can handle integer data without generating
exceptions or modifying data. See page 116 for details.

Converting binary to decimal numbers

The FBLD and FBSTP instructions provide a simple and convenient way of converting
numbers between binary and decimal, but this is not the fastest method.

17.9 Moving blocks of data (All processors)

There are several ways of moving large blocks of data. The most common method is REP

MOVS, but this is not always the fastest method. On processors with SSE or later instruction
sets, the fastest way of moving data may be to use vector registers if the conditions for fast
REP MOVS described on page 143 are not met or if the destination is in the level 1 or level 2
cache. If SSE is available then use XWMregisters. If AVX is available then use YMViregisters.

It is preferred to use the largest available register size (i.e. XMMor YMV) to move the largest
possible number of bytes per operation. Make sure that both source and destination are
aligned by the register size. If the size of the block you want to move is not a multiple of the
register size and you are using a loop for moving data, then it is better to pad the buffers
with extra space in the end and move a little more data than needed than to move the extra
data outside the loop. If the amount of data is constant and so small that you want to unroll
the loop completely then there is no problem in using smaller registers for moving the last
data.

If the source and destination are not aligned properly according to the size of the registers
used then the optimal way of moving data may be to align all the reads at the proper
address boundaries (16-bytes boundaries for XMM registers) and shift and combine
consecutive reads into registers used for writing so that the writes to the destination can
also be aligned. The speed can typically be increased by a factor 4 or more by this method
if source and destination are both in the level-1 cache and unaligned. See the

nmentpy SSE2. asmexample in the appendix www.agner.org/optimize/asmexamples.zip.
This code is so complicated that it should be placed in a function library. The library at
www.agner.org/optimize/asmlib.zip contains an implementation of the nencpy function using
this method. See manual 1: "Optimizing software in C++" for a comparison of function
libraries.

The Nehalem and Sandy Bridge processors have fast misaligned memory access as well as
fast implementations of REP MOVS. The XMM method and the REP MOVS method are equally
fast on these processors. There is no advantage to using YMM registers for memory move
on current processors.

On processors with SSE you also have the option of writing directly to RAM memory without
involving the cache by using the MOVNTQ, MOVNTPS and similar instructions. This can be
useful if you don't want the destination to go into a cache. As a rule of thumb, it can be
recommended to use these non-temporal writes when the amount of data written is more
than half the size of the largest-level cache.

More advices on improving memory access can be found in Intel's "IA-32 Intel Architecture
Optimization Reference Manual" and AMD's "Software Optimization Guide for AMD64
Processors".

17.10 Self-modifying code (All processors)

The penalty for executing a piece of code immediately after modifying it is approximately 19
clocks for P1, 31 for PMMX, and 150-300 for PPro, P2, P3, PM. The P4 will purge the entire

156

http://www.agner.org/optimize/asmexamples.zip
http://www.agner.org/optimize/asmlib.zip

trace cache after self-modifying code. The 80486 and earlier processors require a jump
between the modifying and the modified code in order to flush the code cache.

To get permission to modify code in a protected operating system you need to call special
system functions: In 16-bit Windows call ChangeSel ect or, in 32-bit and 64-bit Windows call
Vi rtual Protect and Fl ushl nstructi onCache. The trick of putting the code in a data
segment doesn't work in newer systems.

Self-modifying code is not considered good programming practice. It should be used only if
the gain in speed is substantial and the modified code is executed so many times that the
advantage outweighs the penalties for using self-modifying code.

Self-modifying code can be useful for example in a math program where a user-defined
function has to be evaluated many times. The program may contain a small compiler that
converts the function to binary code.

18 Measuring performance

18.1 Testing speed

Many compilers have a profiler which makes it possible to measure how many times each
function in a program is called and how long time it takes. This is very useful for finding any
hot spot in the program. If a particular hot spot is taking a high proportion of the total
execution time then this hot spot should be the target for your optimization efforts.

Many profilers are not very accurate, and certainly not accurate enough for fine-tuning a
small part of the code. The most accurate way of testing the speed of a piece of code is to
use the so-called time stamp counter. This is an internal 64-bit clock counter which can be
read into EDX: EAX using the instruction RDTSC (read time stamp counter). The time stamp
counter counts at the CPU clock frequency so that one count equals one clock cycle, which
is the smallest relevant time unit. Some overclocked processors count at a slightly different
frequency.

The time stamp counter is very useful because it can measure how many clock cycles a
piece of code takes. Some processors are able to change the clock frequency in response
to changing workloads. However, when searching for bottlenecks in small pieces of code, it
is more informative to measure clock cycles than to measure microseconds.

The resolution of the time measurement is equal to the value of the clock multiplier (e.g. 11)
on Intel processors with SpeedStep technology. The resolution is one clock cycle on other
processors. The processors with SpeedStep technology have a performance counter for
unhalted core cycles which gives more accurate measurements than the time stamp
counter. Privileged access is necessary to enable this counter.

On all processors with out-of-order execution, you have to insert XOR EAX, EAX/ CPUI D
before and after each read of the counter in order to prevent it from executing in parallel
with anything else. CPUI D is a serializing instruction, which means that it flushes the
pipeline and waits for all pending operations to finish before proceeding. This is very useful
for testing purposes.

The biggest problem when counting clock ticks is to avoid interrupts. Protected operating
systems do not allow you to clear the interrupt flag, so you cannot avoid interrupts and task
switches during the test. This makes test results inaccurate and irreproducible. There are
several alternative ways to overcome this problem:

157

1. Run the test code with a high priority to minimize the risk of interrupts and task
switches.

2. If the piece of code you are testing is not too long then you may repeat the test
several times and assume that the lowest of the clock counts measured represents a
situation where no interrupt has occurred.

3. If the piece of code you are testing takes so long time that interrupts are unavoidable
then you may repeat the test many times and take the average of the clock count
measurements.

4. Make a virtual device driver to clear the interrupt flag.

5. Use an operating system that allows clearing the interrupt flag (e.g. Windows 98
without network, in console mode).

6. Start the test program in real mode using the old DOS operating system.

| have made a series of test programs that use method 1, 2 and possibly 6. These programs
are available at www.agner.org/optimize/testp.zip.

A further complication occurs on processors with multiple cores if a thread can jump from
one core to another. The time stamp counters on different cores are not necessarily
synchronized. This is not a problem when testing small pieces of code if the above
precautions are taken to minimize interrupts. But it can be a problem when measuring
longer time intervals. You may need to lock the process to a single CPU core, for example
with the function Set ProcessAf fi ni t yMask in Windows. This is discussed in the document
"Game Timing and Multicore Processors", Microsoft 2005 http://msdn.microsoft.com/en-
us/library/ee417693.aspx.

You will soon observe when measuring clock cycles that a piece of code always takes
longer time the first time it is executed where it is not in the cache. Furthermore, it may take
two or three iterations before the branch predictor has adapted to the code. The first
measurement gives the execution time when code and data are not in the cache. The
subsequent measurements give the execution time with the best possible caching.

The alignment effects on the PPro, P2 and P3 processors make time measurements very
difficult on these processors. Assume that you have a piece code and you want to make a
change which you expect to make the code a few clocks faster. The modified code does not
have exactly the same size as the original. This means that the code below the modification
will be aligned differently and the instruction fetch blocks will be different. If instruction fetch
and decoding is a bottleneck, which is often the case on these processors, then the change
in the alignment may make the code several clock cycles faster or slower. The change in
the alignment may actually have a larger effect on the clock count than the modification you
have made. So you may be unable to verify whether the modification in itself makes the
code faster or slower. It can be quite difficult to predict where each instruction fetch block
begins, as explained in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".

Other processors do not have serious alignment problems. The P4 does, however, have a
somewhat similar, though less severe, effect. This effect is caused by changes in the
alignment of pops in the trace cache. The time it takes to jump to the least common (but
predicted) branch after a conditional jump instruction may differ by up to two clock cycles on
different alignments if trace cache delivery is the bottleneck. The alignment of pops in the
trace cache lines is difficult to predict.

Most x86 processors also have a set of so-called performance monitor counters which can
count events such as cache misses, misalignments, branch mispredictions, etc. These are

158

http://www.agner.org/optimize/testp.zip
http://msdn.microsoft.com/en-us/library/ee417693.aspx
http://msdn.microsoft.com/en-us/library/ee417693.aspx

very useful for diagnosing performance problems. The performance monitor counters are
processor-specific. You need a different test setup for each type of CPU.

Details about the performance monitor counters can be found in Intel's "IA-32 Intel
Architecture Software Developer’s Manual", vol. 3 and in AMD's "BIOS and Kernel
Developer's Guide".

You need privileged access to set up the performance monitor counters. This is done most
conveniently with a device driver. The test programs at www.agner.org/optimize/testp.zip
give access to the performance monitor counters under 32-bit and 64-bit Windows and 16-
bit real mode DOS. These test program support the different kinds of performance monitor
counters in most Intel, AMD and VIA processors.

Intel and AMD are providing profilers that use the performance monitor counters of their
respective processors. Intel's profiler is called Vtune and AMD's profiler is called
CodeAnalyst.

18.2 The pitfalls of unit-testing

If you want to find out which version of a function performs best then it is not sufficient to
measure clock cycles in a small test program that calls the function many times. Such a test
is unlikely to give a realistic measure of cache misses because the test program may use
less memory than the cache size. For example, an isolated test may show that it is
advantageous to roll out a loop while a test where the function is inserted in the final
program shows a large amount of cache misses when the loop is rolled out.

Therefore, it is important not only to count clock cycles when evaluating the performance of
a function, but also to consider how much space it uses in the code cache, data cache and
branch target buffer.

See the section named "The pitfalls of unit-testing" in manual 1: "Optimizing software in
C++" for further discussion of this problem.

19 Literature

The present manual is part of a series available from www.agner.org/optimize as mentioned
in the introduction on page 4. See manual 3: "The microarchitecture of Intel, AMD and VIA
CPUs" of a list of relevant literature on specific processors.

A lot of other sources also have useful information. These sources are listed in the FAQ for
the newsgroup comp.lang.asm.x86. For other internet resources follow the links from
www.agner.org/optimize.

Some useful books:

R. C. Detmer: Introduction to 80x86 Assembly Language and Computer Architecture, 2'nd
ed. Jones & Bartlett, 2006. Jones & Bartlett, 2006.
Good introduction to assembly programming

J. L. Hennessy and D. A. Patterson: Computer Architecture: A Quantitative Approach, 3'rd
ed. 2002.
Good textbook on computer architecture and microarchitecture

John R. Levine: Linkers and Loaders. Morgan Kaufmann, 2000.
Explains how linkers and loaders work

159

http://www.agner.org/optimize/testp.zip
http://www.agner.org/optimize
news://comp.lang.asm.x86/
http://www.agner.org/optimize/

Henry S. Warren, Jr.: "Hacker's Delight". Addison-Wesley, 2003.
Contains many bit manipulation tricks

20 Copyright notice

This series of five manuals is copyrighted by Agner Fog. Public distribution and mirroring is
not allowed. Non-public distribution to a limited audience for educational purposes is
allowed. The code examples in these manuals can be used without restrictions. A GNU
Free Documentation License shall automatically come into force when | die. See
www.gnu.org/copyleft/fdl.html.

160

http://www.gnu.org/copyleft/fdl.html

	Introduction
	Reasons for using assembly code
	Reasons for not using assembly code
	Microprocessors covered by this manual
	Operating systems covered by this manual

	Before you start
	Things to decide before you start programming
	Make a test strategy
	Common coding pitfalls

	The basics of assembly coding
	Assemblers available
	Register set and basic instructions
	Addressing modes
	Instruction code format
	Instruction prefixes

	ABI standards
	Register usage
	Data storage
	Function calling conventions
	Name mangling and name decoration
	Function examples

	Using intrinsic functions in C++
	Using intrinsic functions for system code
	Using intrinsic functions for instructions not available in standard C++
	Using intrinsic functions for vector operations
	Availability of intrinsic functions

	Using inline assembly in C++
	MASM style inline assembly
	Gnu style inline assembly

	Using an assembler
	Static link libraries
	Dynamic link libraries
	Libraries in source code form
	Making classes in assembly
	Thread-safe functions
	Makefiles

	Making function libraries compatible with multiple compilers and platforms
	Supporting multiple name mangling schemes
	Supporting multiple calling conventions in 32 bit mode
	Supporting multiple calling conventions in 64 bit mode
	Supporting different object file formats
	Supporting other high level languages

	Optimizing for speed
	Identify the most critical parts of your code
	Out of order execution
	Instruction fetch, decoding and retirement
	Instruction latency and throughput
	Break dependency chains
	Jumps and calls

	Optimizing for size
	Choosing shorter instructions
	Using shorter constants and addresses
	Reusing constants
	Constants in 64-bit mode
	Addresses and pointers in 64-bit mode
	Making instructions longer for the sake of alignment
	Using multi-byte NOPs for alignment

	Optimizing memory access
	How caching works
	Trace cache
	µop cache
	Alignment of data
	Alignment of code
	Organizing data for improved caching
	Organizing code for improved caching
	Cache control instructions

	Loops
	Minimize loop overhead
	Induction variables
	Move loop-invariant code
	Find the bottlenecks
	Instruction fetch, decoding and retirement in a loop
	Distribute µops evenly between execution units
	An example of analysis for bottlenecks on PM
	Same example on Core2
	Same example on Sandy Bridge
	Loop unrolling
	Optimize caching
	Parallelization
	Analyzing dependences
	Loops on processors without out-of-order execution
	Macro loops

	Vector programming
	Conditional moves in SIMD registers
	Using vector instructions with other types of data than they are intended for
	Shuffling data
	Generating constants
	Accessing unaligned data
	Using AVX instruction set and YMM registers
	Vector operations in general purpose registers

	Multithreading
	Hyperthreading

	CPU dispatching
	Checking for operating system support for XMM and YMM registers

	Problematic Instructions
	LEA instruction (all processors)
	INC and DEC
	XCHG (all processors)
	Shifts and rotates (P4)
	Rotates through carry (all processors)
	Bit test (all processors)
	LAHF and SAHF (all processors)
	Integer multiplication (all processors)
	Division (all processors)
	String instructions (all processors)
	WAIT instruction (all processors)
	FCOM + FSTSW AX (all processors)
	FPREM (all processors)
	FRNDINT (all processors)
	FSCALE and exponential function (all processors)
	FPTAN (all processors)
	FSQRT (SSE processors)
	FLDCW (Most Intel processors)

	Special topics
	XMM versus floating point registers
	MMX versus XMM registers
	XMM versus YMM registers
	Freeing floating point registers (all processors)
	Transitions between floating point and MMX instructions
	Converting from floating point to integer (All processors)
	Using integer instructions for floating point operations
	Using floating point instructions for integer operations
	Moving blocks of data (All processors)
	Self-modifying code (All processors)

	Measuring performance
	Testing speed
	The pitfalls of unit-testing

	Literature
	Copyright notice

